Files
lerobot/docs/source/metaworld.mdx
Jade Choghari 271d92dcaa feat(sim): add metaworld env (#2088)
* add metaworld

* smol update

Signed-off-by: Jade Choghari <chogharijade@gmail.com>

* update design

* Update src/lerobot/envs/metaworld.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Signed-off-by: Jade Choghari <chogharijade@gmail.com>

* update

* small changes

* iterate on review

* small fix

* small fix

* add docs

* update doc

* add better gif

* smol doc fix

* updage gymnasium

* add note

* depreciate gym-xarm

* more changes

* update doc

* comply with mypy

* more fixes

* update readme

* precommit

* update pusht

* add pusht instead

* changes

* style

* add changes

* update

* revert

* update v2

* chore(envs): move metaworld config to its own file + remove comments + simplify _format_raw_obs (#2200)

* update final changes

---------

Signed-off-by: Jade Choghari <chogharijade@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-10-14 17:21:18 +02:00

81 lines
4.2 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Meta-World
Meta-World is a well-designed, open-source simulation benchmark for multi-task and meta reinforcement learning in continuous-control robotic manipulation. It gives researchers a shared, realistic playground to test whether algorithms can _learn many different tasks_ and _generalize quickly to new ones_ — two central challenges for real-world robotics.
- 📄 [MetaWorld paper](https://arxiv.org/pdf/1910.10897)
- 💻 [Original MetaWorld repo](https://github.com/Farama-Foundation/Metaworld)
![MetaWorld MT10 demo](https://meta-world.github.io/figures/ml45.gif)
## Why Meta-World matters
- **Diverse, realistic tasks.** Meta-World bundles a large suite of simulated manipulation tasks (50 in the MT50 suite) using everyday objects and a common tabletop Sawyer arm. This diversity exposes algorithms to a wide variety of dynamics, contacts and goal specifications while keeping a consistent control and observation structure.
- **Focus on generalization and multi-task learning.** By evaluating across task distributions that share structure but differ in goals and objects, Meta-World reveals whether an agent truly learns transferable skills rather than overfitting to a narrow task.
- **Standardized evaluation protocol.** It provides clear evaluation modes and difficulty splits, so different methods can be compared fairly across easy, medium, hard and very-hard regimes.
- **Empirical insight.** Past evaluations on Meta-World show impressive progress on some fronts, but also highlight that current multi-task and meta-RL methods still struggle with large, diverse task sets. That gap points to important research directions.
## What it enables in LeRobot
In LeRobot, you can evaluate any policy or vision-language-action (VLA) model on Meta-World tasks and get a clear success-rate measure. The integration is designed to be straightforward:
- We provide a LeRobot-ready dataset for Meta-World (MT50) on the HF Hub: `https://huggingface.co/datasets/lerobot/metaworld_mt50`.
- This dataset is formatted for the MT50 evaluation that uses all 50 tasks (the most challenging multi-task setting).
- MT50 gives the policy a one-hot task vector and uses fixed object/goal positions for consistency.
- Task descriptions and the exact keys required for evaluation are available in the repo/dataset — use these to ensure your policy outputs the right success signals.
## Quick start, train a SmolVLA policy on Meta-World
Example command to train a SmolVLA policy on a subset of tasks:
```bash
lerobot-train \
--policy.type=smolvla \
--policy.repo_id=${HF_USER}/metaworld-test \
--policy.load_vlm_weights=true \
--dataset.repo_id=lerobot/metaworld_mt50 \
--env.type=metaworld \
--env.task=assembly-v3,dial-turn-v3,handle-press-side-v3 \
--output_dir=./outputs/ \
--steps=100000 \
--batch_size=4 \
--eval.batch_size=1 \
--eval.n_episodes=1 \
--eval_freq=1000
```
Notes:
- `--env.task` accepts explicit task lists (comma separated) or difficulty groups (e.g., `env.task="hard"`).
- Adjust `batch_size`, `steps`, and `eval_freq` to match your compute budget.
- **Gymnasium Assertion Error**: if you encounter an error like
`AssertionError: ['human', 'rgb_array', 'depth_array']` when running MetaWorld environments, this comes from a mismatch between MetaWorld and your Gymnasium version.
We recommend using:
```bash
pip install "gymnasium==1.1.0"
```
to ensure proper compatibility.
## Quick start — evaluate a trained policy
To evaluate a trained policy on the Meta-World medium difficulty split:
```bash
lerobot-eval \
--policy.path="your-policy-id" \
--env.type=metaworld \
--env.task=medium \
--eval.batch_size=1 \
--eval.n_episodes=2
```
This will run episodes and return per-task success rates using the standard Meta-World evaluation keys.
## Practical tips
- If you care about generalization, run on the full MT50 suite — its intentionally challenging and reveals strengths/weaknesses better than a few narrow tasks.
- Use the one-hot task conditioning for multi-task training (MT10 / MT50 conventions) so policies have explicit task context.
- Inspect the dataset task descriptions and the `info["is_success"]` keys when writing post-processing or logging so your success metrics line up with the benchmark.