* chore: update .gitignore * chore: update pre-commit * chore(deps): update pyproject * fix(ci): multiple fixes * chore: pre-commit apply * chore: address review comments * Update pyproject.toml Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com> Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> * chore(deps): add todo --------- Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com>
30 lines
2.9 KiB
Plaintext
30 lines
2.9 KiB
Plaintext
# 🤗 LeRobot Notebooks
|
|
|
|
This repository contains example notebooks for using LeRobot. These notebooks demonstrate how to train policies on real or simulation datasets using standardized policies.
|
|
|
|
---
|
|
|
|
### Training ACT
|
|
|
|
[ACT](https://huggingface.co/papers/2304.13705) (Action Chunking Transformer) is a transformer-based policy architecture for imitation learning that processes robot states and camera inputs to generate smooth, chunked action sequences.
|
|
|
|
We provide a ready-to-run Google Colab notebook to help you train ACT policies using datasets from the Hugging Face Hub, with optional logging to Weights & Biases.
|
|
|
|
| Notebook | Colab |
|
|
| :------------------------------------------------------------------------------------------------------ | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| [Train ACT with LeRobot](https://github.com/huggingface/notebooks/blob/main/lerobot/training-act.ipynb) | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/lerobot/training-act.ipynb) |
|
|
|
|
Expected training time for 100k steps: ~1.5 hours on an NVIDIA A100 GPU with batch size of `64`.
|
|
|
|
### Training SmolVLA
|
|
|
|
[SmolVLA](https://huggingface.co/papers/2506.01844) is a small but efficient Vision-Language-Action model. It is compact in size with 450 M-parameter and is developed by Hugging Face.
|
|
|
|
We provide a ready-to-run Google Colab notebook to help you train SmolVLA policies using datasets from the Hugging Face Hub, with optional logging to Weights & Biases.
|
|
|
|
| Notebook | Colab |
|
|
| :-------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| [Train SmolVLA with LeRobot](https://github.com/huggingface/notebooks/blob/main/lerobot/training-smolvla.ipynb) | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/lerobot/training-smolvla.ipynb) |
|
|
|
|
Expected training time for 20k steps: ~5 hours on an NVIDIA A100 GPU with batch size of `64`.
|