Files
lerobot_aloha/collect_data/inference.py
2025-04-05 21:46:49 +08:00

769 lines
37 KiB
Python

#!/home/lin/software/miniconda3/envs/aloha/bin/python
# -- coding: UTF-8
"""
#!/usr/bin/python3
"""
import torch
import numpy as np
import os
import pickle
import argparse
from einops import rearrange
import collections
from collections import deque
import rospy
from std_msgs.msg import Header
from geometry_msgs.msg import Twist
from sensor_msgs.msg import JointState, Image
from nav_msgs.msg import Odometry
from cv_bridge import CvBridge
import time
import threading
import math
import threading
import sys
sys.path.append("./")
SEED = 42
torch.manual_seed(SEED)
np.random.seed(SEED)
task_config = {'camera_names': ['cam_high', 'cam_left_wrist', 'cam_right_wrist']}
inference_thread = None
inference_lock = threading.Lock()
inference_actions = None
inference_timestep = None
def actions_interpolation(args, pre_action, actions, stats):
steps = np.concatenate((np.array(args.arm_steps_length), np.array(args.arm_steps_length)), axis=0)
pre_process = lambda s_qpos: (s_qpos - stats['qpos_mean']) / stats['qpos_std']
post_process = lambda a: a * stats['action_std'] + stats['action_mean']
result = [pre_action]
post_action = post_process(actions[0])
# print("pre_action:", pre_action[7:])
# print("actions_interpolation1:", post_action[:, 7:])
max_diff_index = 0
max_diff = -1
for i in range(post_action.shape[0]):
diff = 0
for j in range(pre_action.shape[0]):
if j == 6 or j == 13:
continue
diff += math.fabs(pre_action[j] - post_action[i][j])
if diff > max_diff:
max_diff = diff
max_diff_index = i
for i in range(max_diff_index, post_action.shape[0]):
step = max([math.floor(math.fabs(result[-1][j] - post_action[i][j])/steps[j]) for j in range(pre_action.shape[0])])
inter = np.linspace(result[-1], post_action[i], step+2)
result.extend(inter[1:])
while len(result) < args.chunk_size+1:
result.append(result[-1])
result = np.array(result)[1:args.chunk_size+1]
# print("actions_interpolation2:", result.shape, result[:, 7:])
result = pre_process(result)
result = result[np.newaxis, :]
return result
def get_model_config(args):
# 设置随机种子,你可以确保在相同的初始条件下,每次运行代码时生成的随机数序列是相同的。
set_seed(1)
# 如果是ACT策略
# fixed parameters
if args.policy_class == 'ACT':
policy_config = {'lr': args.lr,
'lr_backbone': args.lr_backbone,
'backbone': args.backbone,
'masks': args.masks,
'weight_decay': args.weight_decay,
'dilation': args.dilation,
'position_embedding': args.position_embedding,
'loss_function': args.loss_function,
'chunk_size': args.chunk_size, # 查询
'camera_names': task_config['camera_names'],
'use_depth_image': args.use_depth_image,
'use_robot_base': args.use_robot_base,
'kl_weight': args.kl_weight, # kl散度权重
'hidden_dim': args.hidden_dim, # 隐藏层维度
'dim_feedforward': args.dim_feedforward,
'enc_layers': args.enc_layers,
'dec_layers': args.dec_layers,
'nheads': args.nheads,
'dropout': args.dropout,
'pre_norm': args.pre_norm
}
elif args.policy_class == 'CNNMLP':
policy_config = {'lr': args.lr,
'lr_backbone': args.lr_backbone,
'backbone': args.backbone,
'masks': args.masks,
'weight_decay': args.weight_decay,
'dilation': args.dilation,
'position_embedding': args.position_embedding,
'loss_function': args.loss_function,
'chunk_size': 1, # 查询
'camera_names': task_config['camera_names'],
'use_depth_image': args.use_depth_image,
'use_robot_base': args.use_robot_base
}
elif args.policy_class == 'Diffusion':
policy_config = {'lr': args.lr,
'lr_backbone': args.lr_backbone,
'backbone': args.backbone,
'masks': args.masks,
'weight_decay': args.weight_decay,
'dilation': args.dilation,
'position_embedding': args.position_embedding,
'loss_function': args.loss_function,
'chunk_size': args.chunk_size, # 查询
'camera_names': task_config['camera_names'],
'use_depth_image': args.use_depth_image,
'use_robot_base': args.use_robot_base,
'observation_horizon': args.observation_horizon,
'action_horizon': args.action_horizon,
'num_inference_timesteps': args.num_inference_timesteps,
'ema_power': args.ema_power
}
else:
raise NotImplementedError
config = {
'ckpt_dir': args.ckpt_dir,
'ckpt_name': args.ckpt_name,
'ckpt_stats_name': args.ckpt_stats_name,
'episode_len': args.max_publish_step,
'state_dim': args.state_dim,
'policy_class': args.policy_class,
'policy_config': policy_config,
'temporal_agg': args.temporal_agg,
'camera_names': task_config['camera_names'],
}
return config
def make_policy(policy_class, policy_config):
if policy_class == 'ACT':
policy = ACTPolicy(policy_config)
elif policy_class == 'CNNMLP':
policy = CNNMLPPolicy(policy_config)
elif policy_class == 'Diffusion':
policy = DiffusionPolicy(policy_config)
else:
raise NotImplementedError
return policy
def get_image(observation, camera_names):
curr_images = []
for cam_name in camera_names:
curr_image = rearrange(observation['images'][cam_name], 'h w c -> c h w')
curr_images.append(curr_image)
curr_image = np.stack(curr_images, axis=0)
curr_image = torch.from_numpy(curr_image / 255.0).float().cuda().unsqueeze(0)
return curr_image
def get_depth_image(observation, camera_names):
curr_images = []
for cam_name in camera_names:
curr_images.append(observation['images_depth'][cam_name])
curr_image = np.stack(curr_images, axis=0)
curr_image = torch.from_numpy(curr_image / 255.0).float().cuda().unsqueeze(0)
return curr_image
def inference_process(args, config, ros_operator, policy, stats, t, pre_action):
global inference_lock
global inference_actions
global inference_timestep
print_flag = True
pre_pos_process = lambda s_qpos: (s_qpos - stats['qpos_mean']) / stats['qpos_std']
pre_action_process = lambda next_action: (next_action - stats["action_mean"]) / stats["action_std"]
rate = rospy.Rate(args.publish_rate)
while True and not rospy.is_shutdown():
result = ros_operator.get_frame()
if not result:
if print_flag:
print("syn fail")
print_flag = False
rate.sleep()
continue
print_flag = True
(img_front, img_left, img_right, img_front_depth, img_left_depth, img_right_depth,
puppet_arm_left, puppet_arm_right, robot_base) = result
obs = collections.OrderedDict()
image_dict = dict()
image_dict[config['camera_names'][0]] = img_front
image_dict[config['camera_names'][1]] = img_left
image_dict[config['camera_names'][2]] = img_right
obs['images'] = image_dict
if args.use_depth_image:
image_depth_dict = dict()
image_depth_dict[config['camera_names'][0]] = img_front_depth
image_depth_dict[config['camera_names'][1]] = img_left_depth
image_depth_dict[config['camera_names'][2]] = img_right_depth
obs['images_depth'] = image_depth_dict
obs['qpos'] = np.concatenate(
(np.array(puppet_arm_left.position), np.array(puppet_arm_right.position)), axis=0)
obs['qvel'] = np.concatenate(
(np.array(puppet_arm_left.velocity), np.array(puppet_arm_right.velocity)), axis=0)
obs['effort'] = np.concatenate(
(np.array(puppet_arm_left.effort), np.array(puppet_arm_right.effort)), axis=0)
if args.use_robot_base:
obs['base_vel'] = [robot_base.twist.twist.linear.x, robot_base.twist.twist.angular.z]
obs['qpos'] = np.concatenate((obs['qpos'], obs['base_vel']), axis=0)
else:
obs['base_vel'] = [0.0, 0.0]
# qpos_numpy = np.array(obs['qpos'])
# 归一化处理qpos 并转到cuda
qpos = pre_pos_process(obs['qpos'])
qpos = torch.from_numpy(qpos).float().cuda().unsqueeze(0)
# 当前图像curr_image获取图像
curr_image = get_image(obs, config['camera_names'])
curr_depth_image = None
if args.use_depth_image:
curr_depth_image = get_depth_image(obs, config['camera_names'])
start_time = time.time()
all_actions = policy(curr_image, curr_depth_image, qpos)
end_time = time.time()
print("model cost time: ", end_time -start_time)
inference_lock.acquire()
inference_actions = all_actions.cpu().detach().numpy()
if pre_action is None:
pre_action = obs['qpos']
# print("obs['qpos']:", obs['qpos'][7:])
if args.use_actions_interpolation:
inference_actions = actions_interpolation(args, pre_action, inference_actions, stats)
inference_timestep = t
inference_lock.release()
break
def model_inference(args, config, ros_operator, save_episode=True):
global inference_lock
global inference_actions
global inference_timestep
global inference_thread
set_seed(1000)
# 1 创建模型数据 继承nn.Module
policy = make_policy(config['policy_class'], config['policy_config'])
# print("model structure\n", policy.model)
# 2 加载模型权重
ckpt_path = os.path.join(config['ckpt_dir'], config['ckpt_name'])
state_dict = torch.load(ckpt_path)
new_state_dict = {}
for key, value in state_dict.items():
if key in ["model.is_pad_head.weight", "model.is_pad_head.bias"]:
continue
if key in ["model.input_proj_next_action.weight", "model.input_proj_next_action.bias"]:
continue
new_state_dict[key] = value
loading_status = policy.deserialize(new_state_dict)
if not loading_status:
print("ckpt path not exist")
return False
# 3 模型设置为cuda模式和验证模式
policy.cuda()
policy.eval()
# 4 加载统计值
stats_path = os.path.join(config['ckpt_dir'], config['ckpt_stats_name'])
# 统计的数据 # 加载action_mean, action_std, qpos_mean, qpos_std 14维
with open(stats_path, 'rb') as f:
stats = pickle.load(f)
# 数据预处理和后处理函数定义
pre_process = lambda s_qpos: (s_qpos - stats['qpos_mean']) / stats['qpos_std']
post_process = lambda a: a * stats['action_std'] + stats['action_mean']
max_publish_step = config['episode_len']
chunk_size = config['policy_config']['chunk_size']
# 发布基础的姿态
left0 = [-0.00133514404296875, 0.00209808349609375, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, 3.557830810546875]
right0 = [-0.00133514404296875, 0.00438690185546875, 0.034523963928222656, -0.053597450256347656, -0.00476837158203125, -0.00209808349609375, 3.557830810546875]
left1 = [-0.00133514404296875, 0.00209808349609375, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, -0.3393220901489258]
right1 = [-0.00133514404296875, 0.00247955322265625, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, -0.3397035598754883]
ros_operator.puppet_arm_publish_continuous(left0, right0)
input("Enter any key to continue :")
ros_operator.puppet_arm_publish_continuous(left1, right1)
action = None
# 推理
with torch.inference_mode():
while True and not rospy.is_shutdown():
# 每个回合的步数
t = 0
max_t = 0
rate = rospy.Rate(args.publish_rate)
if config['temporal_agg']:
all_time_actions = np.zeros([max_publish_step, max_publish_step + chunk_size, config['state_dim']])
while t < max_publish_step and not rospy.is_shutdown():
# start_time = time.time()
# query policy
if config['policy_class'] == "ACT":
if t >= max_t:
pre_action = action
inference_thread = threading.Thread(target=inference_process,
args=(args, config, ros_operator,
policy, stats, t, pre_action))
inference_thread.start()
inference_thread.join()
inference_lock.acquire()
if inference_actions is not None:
inference_thread = None
all_actions = inference_actions
inference_actions = None
max_t = t + args.pos_lookahead_step
if config['temporal_agg']:
all_time_actions[[t], t:t + chunk_size] = all_actions
inference_lock.release()
if config['temporal_agg']:
actions_for_curr_step = all_time_actions[:, t]
actions_populated = np.all(actions_for_curr_step != 0, axis=1)
actions_for_curr_step = actions_for_curr_step[actions_populated]
k = 0.01
exp_weights = np.exp(-k * np.arange(len(actions_for_curr_step)))
exp_weights = exp_weights / exp_weights.sum()
exp_weights = exp_weights[:, np.newaxis]
raw_action = (actions_for_curr_step * exp_weights).sum(axis=0, keepdims=True)
else:
if args.pos_lookahead_step != 0:
raw_action = all_actions[:, t % args.pos_lookahead_step]
else:
raw_action = all_actions[:, t % chunk_size]
else:
raise NotImplementedError
action = post_process(raw_action[0])
left_action = action[:7] # 取7维度
right_action = action[7:14]
ros_operator.puppet_arm_publish(left_action, right_action) # puppet_arm_publish_continuous_thread
if args.use_robot_base:
vel_action = action[14:16]
ros_operator.robot_base_publish(vel_action)
t += 1
# end_time = time.time()
# print("publish: ", t)
# print("time:", end_time - start_time)
# print("left_action:", left_action)
# print("right_action:", right_action)
rate.sleep()
class RosOperator:
def __init__(self, args):
self.robot_base_deque = None
self.puppet_arm_right_deque = None
self.puppet_arm_left_deque = None
self.img_front_deque = None
self.img_right_deque = None
self.img_left_deque = None
self.img_front_depth_deque = None
self.img_right_depth_deque = None
self.img_left_depth_deque = None
self.bridge = None
self.puppet_arm_left_publisher = None
self.puppet_arm_right_publisher = None
self.robot_base_publisher = None
self.puppet_arm_publish_thread = None
self.puppet_arm_publish_lock = None
self.args = args
self.ctrl_state = False
self.ctrl_state_lock = threading.Lock()
self.init()
self.init_ros()
def init(self):
self.bridge = CvBridge()
self.img_left_deque = deque()
self.img_right_deque = deque()
self.img_front_deque = deque()
self.img_left_depth_deque = deque()
self.img_right_depth_deque = deque()
self.img_front_depth_deque = deque()
self.puppet_arm_left_deque = deque()
self.puppet_arm_right_deque = deque()
self.robot_base_deque = deque()
self.puppet_arm_publish_lock = threading.Lock()
self.puppet_arm_publish_lock.acquire()
def puppet_arm_publish(self, left, right):
joint_state_msg = JointState()
joint_state_msg.header = Header()
joint_state_msg.header.stamp = rospy.Time.now() # 设置时间戳
joint_state_msg.name = ['joint0', 'joint1', 'joint2', 'joint3', 'joint4', 'joint5', 'joint6'] # 设置关节名称
joint_state_msg.position = left
self.puppet_arm_left_publisher.publish(joint_state_msg)
joint_state_msg.position = right
self.puppet_arm_right_publisher.publish(joint_state_msg)
def robot_base_publish(self, vel):
vel_msg = Twist()
vel_msg.linear.x = vel[0]
vel_msg.linear.y = 0
vel_msg.linear.z = 0
vel_msg.angular.x = 0
vel_msg.angular.y = 0
vel_msg.angular.z = vel[1]
self.robot_base_publisher.publish(vel_msg)
def puppet_arm_publish_continuous(self, left, right):
rate = rospy.Rate(self.args.publish_rate)
left_arm = None
right_arm = None
while True and not rospy.is_shutdown():
if len(self.puppet_arm_left_deque) != 0:
left_arm = list(self.puppet_arm_left_deque[-1].position)
if len(self.puppet_arm_right_deque) != 0:
right_arm = list(self.puppet_arm_right_deque[-1].position)
if left_arm is None or right_arm is None:
rate.sleep()
continue
else:
break
left_symbol = [1 if left[i] - left_arm[i] > 0 else -1 for i in range(len(left))]
right_symbol = [1 if right[i] - right_arm[i] > 0 else -1 for i in range(len(right))]
flag = True
step = 0
while flag and not rospy.is_shutdown():
if self.puppet_arm_publish_lock.acquire(False):
return
left_diff = [abs(left[i] - left_arm[i]) for i in range(len(left))]
right_diff = [abs(right[i] - right_arm[i]) for i in range(len(right))]
flag = False
for i in range(len(left)):
if left_diff[i] < self.args.arm_steps_length[i]:
left_arm[i] = left[i]
else:
left_arm[i] += left_symbol[i] * self.args.arm_steps_length[i]
flag = True
for i in range(len(right)):
if right_diff[i] < self.args.arm_steps_length[i]:
right_arm[i] = right[i]
else:
right_arm[i] += right_symbol[i] * self.args.arm_steps_length[i]
flag = True
joint_state_msg = JointState()
joint_state_msg.header = Header()
joint_state_msg.header.stamp = rospy.Time.now() # 设置时间戳
joint_state_msg.name = ['joint0', 'joint1', 'joint2', 'joint3', 'joint4', 'joint5', 'joint6'] # 设置关节名称
joint_state_msg.position = left_arm
self.puppet_arm_left_publisher.publish(joint_state_msg)
joint_state_msg.position = right_arm
self.puppet_arm_right_publisher.publish(joint_state_msg)
step += 1
print("puppet_arm_publish_continuous:", step)
rate.sleep()
def puppet_arm_publish_linear(self, left, right):
num_step = 100
rate = rospy.Rate(200)
left_arm = None
right_arm = None
while True and not rospy.is_shutdown():
if len(self.puppet_arm_left_deque) != 0:
left_arm = list(self.puppet_arm_left_deque[-1].position)
if len(self.puppet_arm_right_deque) != 0:
right_arm = list(self.puppet_arm_right_deque[-1].position)
if left_arm is None or right_arm is None:
rate.sleep()
continue
else:
break
traj_left_list = np.linspace(left_arm, left, num_step)
traj_right_list = np.linspace(right_arm, right, num_step)
for i in range(len(traj_left_list)):
traj_left = traj_left_list[i]
traj_right = traj_right_list[i]
traj_left[-1] = left[-1]
traj_right[-1] = right[-1]
joint_state_msg = JointState()
joint_state_msg.header = Header()
joint_state_msg.header.stamp = rospy.Time.now() # 设置时间戳
joint_state_msg.name = ['joint0', 'joint1', 'joint2', 'joint3', 'joint4', 'joint5', 'joint6'] # 设置关节名称
joint_state_msg.position = traj_left
self.puppet_arm_left_publisher.publish(joint_state_msg)
joint_state_msg.position = traj_right
self.puppet_arm_right_publisher.publish(joint_state_msg)
rate.sleep()
def puppet_arm_publish_continuous_thread(self, left, right):
if self.puppet_arm_publish_thread is not None:
self.puppet_arm_publish_lock.release()
self.puppet_arm_publish_thread.join()
self.puppet_arm_publish_lock.acquire(False)
self.puppet_arm_publish_thread = None
self.puppet_arm_publish_thread = threading.Thread(target=self.puppet_arm_publish_continuous, args=(left, right))
self.puppet_arm_publish_thread.start()
def get_frame(self):
if len(self.img_left_deque) == 0 or len(self.img_right_deque) == 0 or len(self.img_front_deque) == 0 or \
(self.args.use_depth_image and (len(self.img_left_depth_deque) == 0 or len(self.img_right_depth_deque) == 0 or len(self.img_front_depth_deque) == 0)):
return False
if self.args.use_depth_image:
frame_time = min([self.img_left_deque[-1].header.stamp.to_sec(), self.img_right_deque[-1].header.stamp.to_sec(), self.img_front_deque[-1].header.stamp.to_sec(),
self.img_left_depth_deque[-1].header.stamp.to_sec(), self.img_right_depth_deque[-1].header.stamp.to_sec(), self.img_front_depth_deque[-1].header.stamp.to_sec()])
else:
frame_time = min([self.img_left_deque[-1].header.stamp.to_sec(), self.img_right_deque[-1].header.stamp.to_sec(), self.img_front_deque[-1].header.stamp.to_sec()])
if len(self.img_left_deque) == 0 or self.img_left_deque[-1].header.stamp.to_sec() < frame_time:
return False
if len(self.img_right_deque) == 0 or self.img_right_deque[-1].header.stamp.to_sec() < frame_time:
return False
if len(self.img_front_deque) == 0 or self.img_front_deque[-1].header.stamp.to_sec() < frame_time:
return False
if len(self.puppet_arm_left_deque) == 0 or self.puppet_arm_left_deque[-1].header.stamp.to_sec() < frame_time:
return False
if len(self.puppet_arm_right_deque) == 0 or self.puppet_arm_right_deque[-1].header.stamp.to_sec() < frame_time:
return False
if self.args.use_depth_image and (len(self.img_left_depth_deque) == 0 or self.img_left_depth_deque[-1].header.stamp.to_sec() < frame_time):
return False
if self.args.use_depth_image and (len(self.img_right_depth_deque) == 0 or self.img_right_depth_deque[-1].header.stamp.to_sec() < frame_time):
return False
if self.args.use_depth_image and (len(self.img_front_depth_deque) == 0 or self.img_front_depth_deque[-1].header.stamp.to_sec() < frame_time):
return False
if self.args.use_robot_base and (len(self.robot_base_deque) == 0 or self.robot_base_deque[-1].header.stamp.to_sec() < frame_time):
return False
while self.img_left_deque[0].header.stamp.to_sec() < frame_time:
self.img_left_deque.popleft()
img_left = self.bridge.imgmsg_to_cv2(self.img_left_deque.popleft(), 'passthrough')
while self.img_right_deque[0].header.stamp.to_sec() < frame_time:
self.img_right_deque.popleft()
img_right = self.bridge.imgmsg_to_cv2(self.img_right_deque.popleft(), 'passthrough')
while self.img_front_deque[0].header.stamp.to_sec() < frame_time:
self.img_front_deque.popleft()
img_front = self.bridge.imgmsg_to_cv2(self.img_front_deque.popleft(), 'passthrough')
while self.puppet_arm_left_deque[0].header.stamp.to_sec() < frame_time:
self.puppet_arm_left_deque.popleft()
puppet_arm_left = self.puppet_arm_left_deque.popleft()
while self.puppet_arm_right_deque[0].header.stamp.to_sec() < frame_time:
self.puppet_arm_right_deque.popleft()
puppet_arm_right = self.puppet_arm_right_deque.popleft()
img_left_depth = None
if self.args.use_depth_image:
while self.img_left_depth_deque[0].header.stamp.to_sec() < frame_time:
self.img_left_depth_deque.popleft()
img_left_depth = self.bridge.imgmsg_to_cv2(self.img_left_depth_deque.popleft(), 'passthrough')
img_right_depth = None
if self.args.use_depth_image:
while self.img_right_depth_deque[0].header.stamp.to_sec() < frame_time:
self.img_right_depth_deque.popleft()
img_right_depth = self.bridge.imgmsg_to_cv2(self.img_right_depth_deque.popleft(), 'passthrough')
img_front_depth = None
if self.args.use_depth_image:
while self.img_front_depth_deque[0].header.stamp.to_sec() < frame_time:
self.img_front_depth_deque.popleft()
img_front_depth = self.bridge.imgmsg_to_cv2(self.img_front_depth_deque.popleft(), 'passthrough')
robot_base = None
if self.args.use_robot_base:
while self.robot_base_deque[0].header.stamp.to_sec() < frame_time:
self.robot_base_deque.popleft()
robot_base = self.robot_base_deque.popleft()
return (img_front, img_left, img_right, img_front_depth, img_left_depth, img_right_depth,
puppet_arm_left, puppet_arm_right, robot_base)
def img_left_callback(self, msg):
if len(self.img_left_deque) >= 2000:
self.img_left_deque.popleft()
self.img_left_deque.append(msg)
def img_right_callback(self, msg):
if len(self.img_right_deque) >= 2000:
self.img_right_deque.popleft()
self.img_right_deque.append(msg)
def img_front_callback(self, msg):
if len(self.img_front_deque) >= 2000:
self.img_front_deque.popleft()
self.img_front_deque.append(msg)
def img_left_depth_callback(self, msg):
if len(self.img_left_depth_deque) >= 2000:
self.img_left_depth_deque.popleft()
self.img_left_depth_deque.append(msg)
def img_right_depth_callback(self, msg):
if len(self.img_right_depth_deque) >= 2000:
self.img_right_depth_deque.popleft()
self.img_right_depth_deque.append(msg)
def img_front_depth_callback(self, msg):
if len(self.img_front_depth_deque) >= 2000:
self.img_front_depth_deque.popleft()
self.img_front_depth_deque.append(msg)
def puppet_arm_left_callback(self, msg):
if len(self.puppet_arm_left_deque) >= 2000:
self.puppet_arm_left_deque.popleft()
self.puppet_arm_left_deque.append(msg)
def puppet_arm_right_callback(self, msg):
if len(self.puppet_arm_right_deque) >= 2000:
self.puppet_arm_right_deque.popleft()
self.puppet_arm_right_deque.append(msg)
def robot_base_callback(self, msg):
if len(self.robot_base_deque) >= 2000:
self.robot_base_deque.popleft()
self.robot_base_deque.append(msg)
def ctrl_callback(self, msg):
self.ctrl_state_lock.acquire()
self.ctrl_state = msg.data
self.ctrl_state_lock.release()
def get_ctrl_state(self):
self.ctrl_state_lock.acquire()
state = self.ctrl_state
self.ctrl_state_lock.release()
return state
def init_ros(self):
rospy.init_node('joint_state_publisher', anonymous=True)
rospy.Subscriber(self.args.img_left_topic, Image, self.img_left_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.img_right_topic, Image, self.img_right_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.img_front_topic, Image, self.img_front_callback, queue_size=1000, tcp_nodelay=True)
if self.args.use_depth_image:
rospy.Subscriber(self.args.img_left_depth_topic, Image, self.img_left_depth_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.img_right_depth_topic, Image, self.img_right_depth_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.img_front_depth_topic, Image, self.img_front_depth_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.puppet_arm_left_topic, JointState, self.puppet_arm_left_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.puppet_arm_right_topic, JointState, self.puppet_arm_right_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.robot_base_topic, Odometry, self.robot_base_callback, queue_size=1000, tcp_nodelay=True)
self.puppet_arm_left_publisher = rospy.Publisher(self.args.puppet_arm_left_cmd_topic, JointState, queue_size=10)
self.puppet_arm_right_publisher = rospy.Publisher(self.args.puppet_arm_right_cmd_topic, JointState, queue_size=10)
self.robot_base_publisher = rospy.Publisher(self.args.robot_base_cmd_topic, Twist, queue_size=10)
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt_dir', action='store', type=str, help='ckpt_dir', required=True)
parser.add_argument('--task_name', action='store', type=str, help='task_name', default='aloha_mobile_dummy', required=False)
parser.add_argument('--max_publish_step', action='store', type=int, help='max_publish_step', default=10000, required=False)
parser.add_argument('--ckpt_name', action='store', type=str, help='ckpt_name', default='policy_best.ckpt', required=False)
parser.add_argument('--ckpt_stats_name', action='store', type=str, help='ckpt_stats_name', default='dataset_stats.pkl', required=False)
parser.add_argument('--policy_class', action='store', type=str, help='policy_class, capitalize', default='ACT', required=False)
parser.add_argument('--batch_size', action='store', type=int, help='batch_size', default=8, required=False)
parser.add_argument('--seed', action='store', type=int, help='seed', default=0, required=False)
parser.add_argument('--num_epochs', action='store', type=int, help='num_epochs', default=2000, required=False)
parser.add_argument('--lr', action='store', type=float, help='lr', default=1e-5, required=False)
parser.add_argument('--weight_decay', type=float, help='weight_decay', default=1e-4, required=False)
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)", required=False)
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features", required=False)
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
parser.add_argument('--kl_weight', action='store', type=int, help='KL Weight', default=10, required=False)
parser.add_argument('--hidden_dim', action='store', type=int, help='hidden_dim', default=512, required=False)
parser.add_argument('--dim_feedforward', action='store', type=int, help='dim_feedforward', default=3200, required=False)
parser.add_argument('--temporal_agg', action='store', type=bool, help='temporal_agg', default=True, required=False)
parser.add_argument('--state_dim', action='store', type=int, help='state_dim', default=14, required=False)
parser.add_argument('--lr_backbone', action='store', type=float, help='lr_backbone', default=1e-5, required=False)
parser.add_argument('--backbone', action='store', type=str, help='backbone', default='resnet18', required=False)
parser.add_argument('--loss_function', action='store', type=str, help='loss_function l1 l2 l1+l2', default='l1', required=False)
parser.add_argument('--enc_layers', action='store', type=int, help='enc_layers', default=4, required=False)
parser.add_argument('--dec_layers', action='store', type=int, help='dec_layers', default=7, required=False)
parser.add_argument('--nheads', action='store', type=int, help='nheads', default=8, required=False)
parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer", required=False)
parser.add_argument('--pre_norm', action='store_true', required=False)
parser.add_argument('--img_front_topic', action='store', type=str, help='img_front_topic',
default='/camera_f/color/image_raw', required=False)
parser.add_argument('--img_left_topic', action='store', type=str, help='img_left_topic',
default='/camera_l/color/image_raw', required=False)
parser.add_argument('--img_right_topic', action='store', type=str, help='img_right_topic',
default='/camera_r/color/image_raw', required=False)
parser.add_argument('--img_front_depth_topic', action='store', type=str, help='img_front_depth_topic',
default='/camera_f/depth/image_raw', required=False)
parser.add_argument('--img_left_depth_topic', action='store', type=str, help='img_left_depth_topic',
default='/camera_l/depth/image_raw', required=False)
parser.add_argument('--img_right_depth_topic', action='store', type=str, help='img_right_depth_topic',
default='/camera_r/depth/image_raw', required=False)
parser.add_argument('--puppet_arm_left_cmd_topic', action='store', type=str, help='puppet_arm_left_cmd_topic',
default='/master/joint_left', required=False)
parser.add_argument('--puppet_arm_right_cmd_topic', action='store', type=str, help='puppet_arm_right_cmd_topic',
default='/master/joint_right', required=False)
parser.add_argument('--puppet_arm_left_topic', action='store', type=str, help='puppet_arm_left_topic',
default='/puppet/joint_left', required=False)
parser.add_argument('--puppet_arm_right_topic', action='store', type=str, help='puppet_arm_right_topic',
default='/puppet/joint_right', required=False)
parser.add_argument('--robot_base_topic', action='store', type=str, help='robot_base_topic',
default='/odom_raw', required=False)
parser.add_argument('--robot_base_cmd_topic', action='store', type=str, help='robot_base_topic',
default='/cmd_vel', required=False)
parser.add_argument('--use_robot_base', action='store', type=bool, help='use_robot_base',
default=False, required=False)
parser.add_argument('--publish_rate', action='store', type=int, help='publish_rate',
default=40, required=False)
parser.add_argument('--pos_lookahead_step', action='store', type=int, help='pos_lookahead_step',
default=0, required=False)
parser.add_argument('--chunk_size', action='store', type=int, help='chunk_size',
default=32, required=False)
parser.add_argument('--arm_steps_length', action='store', type=float, help='arm_steps_length',
default=[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.2], required=False)
parser.add_argument('--use_actions_interpolation', action='store', type=bool, help='use_actions_interpolation',
default=False, required=False)
parser.add_argument('--use_depth_image', action='store', type=bool, help='use_depth_image',
default=False, required=False)
# for Diffusion
parser.add_argument('--observation_horizon', action='store', type=int, help='observation_horizon', default=1, required=False)
parser.add_argument('--action_horizon', action='store', type=int, help='action_horizon', default=8, required=False)
parser.add_argument('--num_inference_timesteps', action='store', type=int, help='num_inference_timesteps', default=10, required=False)
parser.add_argument('--ema_power', action='store', type=int, help='ema_power', default=0.75, required=False)
args = parser.parse_args()
return args
def main():
args = get_arguments()
ros_operator = RosOperator(args)
config = get_model_config(args)
model_inference(args, config, ros_operator, save_episode=True)
if __name__ == '__main__':
main()
# python act/inference.py --ckpt_dir ~/train0314/