Eval reproduced! Train running (but not reproduced)
This commit is contained in:
@@ -1,11 +1,24 @@
|
||||
import pickle
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import hydra
|
||||
import imageio
|
||||
import numpy as np
|
||||
import torch
|
||||
from tensordict.nn import TensorDictModule
|
||||
from termcolor import colored
|
||||
from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
|
||||
from torchrl.data.datasets.d4rl import D4RLExperienceReplay
|
||||
from torchrl.data.datasets.openx import OpenXExperienceReplay
|
||||
from torchrl.data.replay_buffers import PrioritizedSliceSampler
|
||||
|
||||
from lerobot.common.datasets.simxarm import SimxarmExperienceReplay
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.logger import Logger
|
||||
from lerobot.common.tdmpc import TDMPC
|
||||
|
||||
from ..common.utils import set_seed
|
||||
from lerobot.common.utils import set_seed
|
||||
from lerobot.scripts.eval import eval_policy
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_name="default", config_path="../configs")
|
||||
@@ -15,22 +28,169 @@ def train(cfg: dict):
|
||||
print(colored("Work dir:", "yellow", attrs=["bold"]), cfg.log_dir)
|
||||
|
||||
env = make_env(cfg)
|
||||
agent = TDMPC(cfg)
|
||||
policy = TDMPC(cfg)
|
||||
# ckpt_path = "/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/offline.pt"
|
||||
ckpt_path = "/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/final.pt"
|
||||
agent.load(ckpt_path)
|
||||
policy.load(ckpt_path)
|
||||
|
||||
# online training
|
||||
|
||||
eval_metrics = train_agent(
|
||||
env,
|
||||
agent,
|
||||
num_episodes=10,
|
||||
save_video=True,
|
||||
video_dir=Path("tmp/2023_01_29_xarm_lift_final"),
|
||||
td_policy = TensorDictModule(
|
||||
policy,
|
||||
in_keys=["observation", "step_count"],
|
||||
out_keys=["action"],
|
||||
)
|
||||
|
||||
print(eval_metrics)
|
||||
# initialize offline dataset
|
||||
|
||||
dataset_id = f"xarm_{cfg.task}_medium"
|
||||
|
||||
num_traj_per_batch = cfg.batch_size # // cfg.horizon
|
||||
# TODO(rcadene): Sampler outputs a batch_size <= cfg.batch_size.
|
||||
# We would need to add a transform to pad the tensordict to ensure batch_size == cfg.batch_size.
|
||||
sampler = PrioritizedSliceSampler(
|
||||
max_capacity=100_000,
|
||||
alpha=0.7,
|
||||
beta=0.9,
|
||||
num_slices=num_traj_per_batch,
|
||||
strict_length=False,
|
||||
)
|
||||
|
||||
# TODO(rcadene): use PrioritizedReplayBuffer
|
||||
offline_buffer = SimxarmExperienceReplay(
|
||||
dataset_id,
|
||||
# download="force",
|
||||
download=True,
|
||||
streaming=False,
|
||||
root="data",
|
||||
sampler=sampler,
|
||||
)
|
||||
|
||||
num_steps = len(offline_buffer)
|
||||
index = torch.arange(0, num_steps, 1)
|
||||
sampler.extend(index)
|
||||
|
||||
# offline_buffer._storage.device = torch.device("cuda")
|
||||
# offline_buffer._storage._storage.to(torch.device("cuda"))
|
||||
# TODO(rcadene): add online_buffer
|
||||
|
||||
# Observation encoder
|
||||
# Dynamics predictor
|
||||
# Reward predictor
|
||||
# Policy
|
||||
# Qs state-action value predictor
|
||||
# V state value predictor
|
||||
|
||||
L = Logger(cfg.log_dir, cfg)
|
||||
|
||||
episode_idx = 0
|
||||
start_time = time.time()
|
||||
step = 0
|
||||
last_log_step = 0
|
||||
last_save_step = 0
|
||||
|
||||
while step < cfg.train_steps:
|
||||
is_offline = True
|
||||
num_updates = cfg.episode_length
|
||||
_step = step + num_updates
|
||||
rollout_metrics = {}
|
||||
|
||||
# if step >= cfg.offline_steps:
|
||||
# is_offline = False
|
||||
|
||||
# # Collect trajectory
|
||||
# obs = env.reset()
|
||||
# episode = Episode(cfg, obs)
|
||||
# success = False
|
||||
# while not episode.done:
|
||||
# action = policy.act(obs, step=step, t0=episode.first)
|
||||
# obs, reward, done, info = env.step(action.cpu().numpy())
|
||||
# reward = reward_normalizer(reward)
|
||||
# mask = 1.0 if (not done or "TimeLimit.truncated" in info) else 0.0
|
||||
# success = info.get('success', False)
|
||||
# episode += (obs, action, reward, done, mask, success)
|
||||
# assert len(episode) <= cfg.episode_length
|
||||
# buffer += episode
|
||||
# episode_idx += 1
|
||||
# rollout_metrics = {
|
||||
# 'episode_reward': episode.cumulative_reward,
|
||||
# 'episode_success': float(success),
|
||||
# 'episode_length': len(episode)
|
||||
# }
|
||||
# num_updates = len(episode) * cfg.utd
|
||||
# _step = min(step + len(episode), cfg.train_steps)
|
||||
|
||||
# Update model
|
||||
train_metrics = {}
|
||||
if is_offline:
|
||||
for i in range(num_updates):
|
||||
train_metrics.update(policy.update(offline_buffer, step + i))
|
||||
# else:
|
||||
# for i in range(num_updates):
|
||||
# train_metrics.update(
|
||||
# policy.update(buffer, step + i // cfg.utd,
|
||||
# demo_buffer=offline_buffer if cfg.balanced_sampling else None)
|
||||
# )
|
||||
|
||||
# Log training metrics
|
||||
env_step = int(_step * cfg.action_repeat)
|
||||
common_metrics = {
|
||||
"episode": episode_idx,
|
||||
"step": _step,
|
||||
"env_step": env_step,
|
||||
"total_time": time.time() - start_time,
|
||||
"is_offline": float(is_offline),
|
||||
}
|
||||
train_metrics.update(common_metrics)
|
||||
train_metrics.update(rollout_metrics)
|
||||
L.log(train_metrics, category="train")
|
||||
|
||||
# Evaluate policy periodically
|
||||
if step == 0 or env_step - last_log_step >= cfg.eval_freq:
|
||||
|
||||
eval_metrics = eval_policy(
|
||||
env,
|
||||
td_policy,
|
||||
num_episodes=cfg.eval_episodes,
|
||||
# TODO(rcadene): add step, env_step, L.video
|
||||
)
|
||||
|
||||
# TODO(rcadene):
|
||||
# if hasattr(env, "get_normalized_score"):
|
||||
# eval_metrics['normalized_score'] = env.get_normalized_score(eval_metrics["episode_reward"]) * 100.0
|
||||
|
||||
common_metrics.update(eval_metrics)
|
||||
|
||||
L.log(common_metrics, category="eval")
|
||||
last_log_step = env_step - env_step % cfg.eval_freq
|
||||
|
||||
# Save model periodically
|
||||
# if cfg.save_model and env_step - last_save_step >= cfg.save_freq:
|
||||
# L.save_model(policy, identifier=env_step)
|
||||
# print(f"Model has been checkpointed at step {env_step}")
|
||||
# last_save_step = env_step - env_step % cfg.save_freq
|
||||
|
||||
# if cfg.save_model and is_offline and _step >= cfg.offline_steps:
|
||||
# # save the model after offline training
|
||||
# L.save_model(policy, identifier="offline")
|
||||
|
||||
step = _step
|
||||
|
||||
# dataset_d4rl = D4RLExperienceReplay(
|
||||
# dataset_id="maze2d-umaze-v1",
|
||||
# split_trajs=False,
|
||||
# batch_size=1,
|
||||
# sampler=SamplerWithoutReplacement(drop_last=False),
|
||||
# prefetch=4,
|
||||
# direct_download=True,
|
||||
# )
|
||||
|
||||
# dataset_openx = OpenXExperienceReplay(
|
||||
# "cmu_stretch",
|
||||
# batch_size=1,
|
||||
# num_slices=1,
|
||||
# #download="force",
|
||||
# streaming=False,
|
||||
# root="data",
|
||||
# )
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user