Add policies/factory, Add test, Add _self_ in config
This commit is contained in:
@@ -11,10 +11,9 @@ from torchrl.data.datasets.openx import OpenXExperienceReplay
|
||||
from torchrl.data.replay_buffers import PrioritizedSliceSampler
|
||||
|
||||
from lerobot.common.datasets.factory import make_offline_buffer
|
||||
from lerobot.common.datasets.simxarm import SimxarmExperienceReplay
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.logger import Logger
|
||||
from lerobot.common.tdmpc import TDMPC
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils import set_seed
|
||||
from lerobot.scripts.eval import eval_policy
|
||||
|
||||
@@ -51,17 +50,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
print(colored("Work dir:", "yellow", attrs=["bold"]), out_dir)
|
||||
|
||||
env = make_env(cfg)
|
||||
policy = TDMPC(cfg)
|
||||
if cfg.pretrained_model_path:
|
||||
# TODO(rcadene): hack for old pretrained models from fowm
|
||||
if "fowm" in cfg.pretrained_model_path:
|
||||
if "offline" in cfg.pretrained_model_path:
|
||||
policy.step[0] = 25000
|
||||
elif "final" in cfg.pretrained_model_path:
|
||||
policy.step[0] = 100000
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
policy.load(cfg.pretrained_model_path)
|
||||
policy = make_policy(cfg)
|
||||
|
||||
td_policy = TensorDictModule(
|
||||
policy,
|
||||
|
||||
Reference in New Issue
Block a user