Compare commits

4 Commits

Author SHA1 Message Date
2bcbddbfb6 修改摄像头排布,新增显示窗口合并为一个的函数进行窗口排布。
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2025-05-07 21:47:11 +08:00
ac85a0d17e 修改控制按钮;增加enter以确认当前轨迹;增加backspace以丢弃当前轨迹。
Some checks are pending
Secret Leaks / trufflehog (push) Waiting to run
2025-05-07 21:05:28 +08:00
5bf422ca6f 统一存储的state和action为相同的度量,小数度量
Some checks are pending
Secret Leaks / trufflehog (push) Waiting to run
2025-05-07 20:10:08 +08:00
676ab74521 添加关节控制和末端控制两种控制模式的统一类;添加测试脚本;融合到piper.py
Some checks are pending
Secret Leaks / trufflehog (push) Waiting to run
2025-05-07 11:29:56 +08:00
8 changed files with 1344 additions and 49 deletions

View File

@@ -125,3 +125,4 @@ python lerobot/scripts/control_robot.py \
--control.policy.path=outputs/train/act_koch_pick_place_lego/checkpoints/latest/pretrained_model
```
export LD_LIBRARY_PATH=/home/ubuntu/miniconda3/envs/piper_lerobot/lib:$LD_LIBRARY_PATH

View File

@@ -121,36 +121,39 @@ def init_keyboard_listener():
events["exit_early"] = False
events["rerecord_episode"] = False
events["stop_recording"] = False
events["confirm_save"] = False
events["discard_episode"] = False
if is_headless():
logging.warning(
"Headless environment detected. On-screen cameras display and keyboard inputs will not be available."
)
listener = None
return listener, events
# Only import pynput if not in a headless environment
from pynput import keyboard
def on_press(key):
try:
if key == keyboard.Key.right:
print("Right arrow key pressed. Exiting loop...")
print("Right arrow key pressed. Exiting current recording...")
events["exit_early"] = True
elif key == keyboard.Key.left:
print("Left arrow key pressed. Exiting loop and rerecord the last episode...")
print("Left arrow key pressed. Interrupting and preparing to rerecord...")
events["rerecord_episode"] = True
events["exit_early"] = True
elif key == keyboard.Key.esc:
print("Escape key pressed. Stopping data recording...")
print("Escape key pressed. Stopping data recording session...")
events["stop_recording"] = True
events["exit_early"] = True
elif key == keyboard.Key.enter:
print("Enter key pressed. Confirming and saving current episode...")
events["confirm_save"] = True
elif key == keyboard.Key.backspace:
print("Back key pressed. Discarding completed episode...")
events["discard_episode"] = True
except Exception as e:
print(f"Error handling key press: {e}")
listener = keyboard.Listener(on_press=on_press)
listener.start()
return listener, events
@@ -257,10 +260,11 @@ def control_loop(
dataset.add_frame(frame)
if display_cameras and not is_headless():
image_keys = [key for key in observation if "image" in key]
for key in image_keys:
cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
# image_keys = [key for key in observation if "image" in key]
# for key in image_keys:
# cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
# cv2.waitKey(1)
display_observations_combined(observation)
if fps is not None:
dt_s = time.perf_counter() - start_loop_t
@@ -274,6 +278,107 @@ def control_loop(
events["exit_early"] = False
break
import numpy as np
def display_observations_combined(observation, display_cameras=True):
"""将摄像头画面组合在一个窗口中显示,优化以防止抖动"""
if display_cameras and not is_headless():
image_keys = [key for key in observation if "image" in key]
if not image_keys:
return
# 获取所有图像并转换为BGR格式
images = []
for key in image_keys:
img = observation[key].numpy()
# 确保每个图像尺寸为640×480
if img.shape[0] != 480 or img.shape[1] != 640:
img = cv2.resize(img, (640, 480))
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# 添加图像标题
cv2.putText(img, key, (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
images.append(img)
# 根据实际摄像头数量确定布局
num_cameras = len(images)
# 为固定数量的摄像头定义固定布局
margin = 10 # 图像之间的间距
if num_cameras == 1:
# 单个摄像头 - 直接显示
grid_image = images[0]
elif num_cameras == 2:
# 两个摄像头 - 水平排列
grid_width = 2 * 640 + margin
grid_height = 480
grid_image = np.zeros((grid_height, grid_width, 3), dtype=np.uint8)
# 放置两个图像
grid_image[0:480, 0:640] = images[0]
grid_image[0:480, 640+margin:] = images[1]
elif num_cameras == 3:
# 三个摄像头 - 上面一行2个下面一个
grid_width = 2 * 640 + margin
grid_height = 2 * 480 + margin
grid_image = np.zeros((grid_height, grid_width, 3), dtype=np.uint8)
# 放置三个图像
grid_image[0:480, 0:640] = images[0]
grid_image[0:480, 640+margin:] = images[1]
grid_image[480+margin:, (grid_width-640)//2:(grid_width+640)//2] = images[2] # 居中放置
else:
# 四个或更多摄像头 - 2×2网格
grid_cols = 2
grid_rows = 2
grid_width = grid_cols * 640 + (grid_cols - 1) * margin
grid_height = grid_rows * 480 + (grid_rows - 1) * margin
grid_image = np.zeros((grid_height, grid_width, 3), dtype=np.uint8)
# 最多显示4个
for i, img in enumerate(images[:4]):
row = i // grid_cols
col = i % grid_cols
y_start = row * (480 + margin)
y_end = y_start + 480
x_start = col * (640 + margin)
x_end = x_start + 640
grid_image[y_start:y_end, x_start:x_end] = img
# 创建一个固定名称的窗口
window_name = "Camera Views"
# 使用 getWindowProperty 检查窗口是否已经存在
try:
# 尝试获取窗口属性 - 如果窗口不存在会抛出异常
window_exists = cv2.getWindowProperty(window_name, cv2.WND_PROP_VISIBLE) >= 0
except:
window_exists = False
# 如果窗口不存在,创建并定位它
if not window_exists:
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
# 设置窗口位置和大小(只需要在创建时设置一次)
screen_width = 1920 # 您的屏幕宽度
screen_height = 1080 # 您的屏幕高度
# 根据实际图像计算合适的显示尺寸
scale_factor = min(screen_width / grid_width, screen_height / grid_height) * 0.95
display_width = int(grid_width * scale_factor)
display_height = int(grid_height * scale_factor)
cv2.resizeWindow(window_name, display_width, display_height)
cv2.moveWindow(window_name, (screen_width - display_width) // 2,
(screen_height - display_height) // 2) # 居中显示
# 显示图像
cv2.imshow(window_name, grid_image)
cv2.waitKey(1)
def reset_environment(robot, events, reset_time_s, fps):
# TODO(rcadene): refactor warmup_record and reset_environment

View File

@@ -91,9 +91,9 @@ class PiperMotorsBus:
"""
移动到初始位置
"""
self.write(target_joint=self.init_joint_position)
self.write("joints", target_joint=self.init_joint_position)
def write(self, target_joint:list):
def write(self, control_mode:str, target_joint:list):
"""
Joint control
- target joint: in radians
@@ -105,21 +105,49 @@ class PiperMotorsBus:
joint_6 (float): 关节6角度 -90000~90000 / 57324.840764
gripper_range: 夹爪角度 0~0.08
"""
joint_0 = round(target_joint[0]*self.joint_factor)
joint_1 = round(target_joint[1]*self.joint_factor)
joint_2 = round(target_joint[2]*self.joint_factor)
joint_3 = round(target_joint[3]*self.joint_factor)
joint_4 = round(target_joint[4]*self.joint_factor)
joint_5 = round(target_joint[5]*self.joint_factor)
if control_mode == "end_pose":
# 末端位姿控制
factor = 1000
X = round(target_joint[0]*factor*factor)
Y = round(target_joint[1]*factor*factor)
Z = round(target_joint[2]*factor*factor)
RX = round(target_joint[3]*factor)
RY = round(target_joint[4]*factor)
RZ = round(target_joint[5]*factor)
self.piper.MotionCtrl_2(0x01, 0x00, 100, 0x00)
self.piper.EndPoseCtrl(X, Y, Z, RX, RY, RZ)
else:
# 关节控制
joint_0 = round(target_joint[0]*self.joint_factor)
joint_1 = round(target_joint[1]*self.joint_factor)
joint_2 = round(target_joint[2]*self.joint_factor)
joint_3 = round(target_joint[3]*self.joint_factor)
joint_4 = round(target_joint[4]*self.joint_factor)
joint_5 = round(target_joint[5]*self.joint_factor)
self.piper.MotionCtrl_2(0x01, 0x01, 100, 0x00) # joint control # 0x00 标准模式
# self.piper.MotionCtrl_2(0x01, 0x01, 10, 0xAD) # joint control # mit模式
self.piper.JointCtrl(joint_0, joint_1, joint_2, joint_3, joint_4, joint_5)
# 夹爪控制
gripper_range = round(target_joint[6]*1000*1000)
self.piper.MotionCtrl_2(0x01, 0x01, 100, 0x00) # joint control # 0x00 标准模式
# self.piper.MotionCtrl_2(0x01, 0x01, 10, 0xAD) # joint control # mit模式
self.piper.JointCtrl(joint_0, joint_1, joint_2, joint_3, joint_4, joint_5)
self.piper.GripperCtrl(abs(gripper_range), 1000, 0x01, 0) # 单位 0.001°
# def write_endpose(self, target_pose: list):
# X = round(target_pose[0] * 1000 * 1000) # m -> mm -> 0.001mm
# Y = round(target_pose[1] * 1000 * 1000)
# Z = round(target_pose[2] * 1000 * 1000)
# RX = round(target_pose[3] * self.joint_factor) # rad -> 0.001deg
# RY = round(target_pose[4] * self.joint_factor)
# RZ = round(target_pose[5] * self.joint_factor)
# gripper_range = round(target_pose[6]*1000*1000)
# self.piper.EndPoseCtrl(X, Y, Z, RX, RY, RZ)
# self.piper.GripperCtrl(abs(gripper_range), 1000, 0x01, 0) # 单位 0.001°
def read(self) -> Dict:
"""
- 机械臂关节消息,单位0.001度
@@ -132,17 +160,17 @@ class PiperMotorsBus:
gripper_state = gripper_msg.gripper_state
return {
"joint_1": joint_state.joint_1,
"joint_2": joint_state.joint_2,
"joint_3": joint_state.joint_3,
"joint_4": joint_state.joint_4,
"joint_5": joint_state.joint_5,
"joint_6": joint_state.joint_6,
"gripper": gripper_state.grippers_angle
"joint_1": joint_state.joint_1 / self.joint_factor,
"joint_2": joint_state.joint_2 / self.joint_factor,
"joint_3": joint_state.joint_3 / self.joint_factor,
"joint_4": joint_state.joint_4 / self.joint_factor,
"joint_5": joint_state.joint_5 / self.joint_factor,
"joint_6": joint_state.joint_6 / self.joint_factor,
"gripper": gripper_state.grippers_angle / 1000 / 1000
}
def safe_disconnect(self):
"""
Move to safe disconnect position
"""
self.write(target_joint=self.safe_disable_position)
self.write("joints", target_joint=self.safe_disable_position)

View File

@@ -7,7 +7,7 @@ import torch
import numpy as np
from dataclasses import dataclass, field, replace
from lerobot.common.robot_devices.teleop.gamepad import SixAxisArmController
from lerobot.common.robot_devices.teleop.gamepad import SixAxisArmController, UnifiedArmController
from lerobot.common.robot_devices.motors.utils import get_motor_names, make_motors_buses_from_configs
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
@@ -31,7 +31,8 @@ class PiperRobot:
# build gamepad teleop
if not self.inference_time:
self.teleop = SixAxisArmController()
# self.teleop = SixAxisArmController()
self.teleop = UnifiedArmController()
else:
self.teleop = None
@@ -138,24 +139,31 @@ class PiperRobot:
raise ConnectionError()
if self.teleop is None and self.inference_time:
self.teleop = SixAxisArmController()
# self.teleop = SixAxisArmController()
self.teleop = UnifiedArmController()
# read target pose state as
before_read_t = time.perf_counter()
state = self.arm.read() # read current joint position from robot
action = self.teleop.get_action() # target joint position from gamepad
action = self.teleop.get_action() # target joint position/ end pose from gamepad
control_mode = self.teleop.get_control_mode()
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
# do action
before_write_t = time.perf_counter()
target_joints = list(action.values())
self.arm.write(target_joints)
self.arm.write(control_mode, target_joints) # execute joint pos / end pose
# update teleop state
new_end_pose = self.arm.piper.GetArmEndPoseMsgs().end_pose
new_joint_state = self.arm.piper.GetArmJointMsgs().joint_state
self.teleop.update_state(control_mode, new_end_pose, new_joint_state) # new arm state update teleop state
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
if not record_data:
return
state = torch.as_tensor(list(state.values()), dtype=torch.float32)
action = self.teleop.get_joints() # 取最新的关节状态, 取joints不用前面的action是因为action同时包含endpose或joints
action = torch.as_tensor(list(action.values()), dtype=torch.float32)
# Capture images from cameras
@@ -176,8 +184,6 @@ class PiperRobot:
return obs_dict, action_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
"""Write the predicted actions from policy to the motors"""
if not self.is_connected:
@@ -191,8 +197,6 @@ class PiperRobot:
return action
def capture_observation(self) -> dict:
"""capture current images and joint positions"""
if not self.is_connected:

View File

@@ -130,12 +130,432 @@ class SixAxisArmController:
self.speeds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # 6个关节的速度
self.gripper_speed = 0.0 # 夹爪速度
class UnifiedArmController:
def __init__(self):
# 初始化pygame和手柄
pygame.init()
pygame.joystick.init()
# 检查是否有连接的手柄
if pygame.joystick.get_count() == 0:
raise Exception("未检测到手柄")
# 初始化手柄
self.joystick = pygame.joystick.Joystick(0)
self.joystick.init()
# 控制模式标志 - True为末端位姿控制False为关节控制
self.end_pose_mode = False
# 摇杆死区
self.deadzone = 0.15
# 精细控制模式
self.fine_control_mode = False
# 初始化关节状态
self.joints = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # 6个关节
self.joint_speeds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # 6个关节的速度
# 关节弧度限制
self.joint_limits = [
(-92000 / 57324.840764, 92000 / 57324.840764), # joint1
( 0 / 57324.840764, 120000 / 57324.840764), # joint2
(-80000 / 57324.840764, 0 / 57324.840764), # joint3
(-90000 / 57324.840764, 90000 / 57324.840764), # joint4
(-65000 / 57324.840764, 65000 / 57324.840764), # joint5
(-90000 / 57324.840764, 90000 / 57324.840764) # joint6
]
# 初始化末端姿态 [X, Y, Z, RX, RY, RZ]
self.pose = [0.056127, 0, 0.213266, 0, 84.999, 0]
self.pose_speeds = [0.0] * 6
# 末端位姿限制
self.pose_limits = [
(-0.6, 0.6), # X (m)
(-0.6, 0.6), # Y (m)
(0.05, 0.6), # Z (m) - 设置最小高度防止碰撞
(-180, 180), # RX (deg)
(-180, 180), # RY (deg)
(-180, 180) # RZ (deg)
]
# 控制参数
self.linear_step = 0.0015 # 线性移动步长(m)
self.angular_step = 0.05 # 角度步长(deg)
self.joint_step = 0.015 # 关节步长(rad)
# 夹爪状态和速度
self.gripper = 0.0
self.gripper_speed = 0.0
# 启动更新线程
self.running = True
self.thread = threading.Thread(target=self.update_controller)
self.thread.start()
print("机械臂统一控制器已启动")
print("按下OPTIONS(Start)切换控制模式")
print("当前模式:", "末端位姿控制" if self.end_pose_mode else "关节控制")
def _apply_nonlinear_mapping(self, value):
"""应用非线性映射以提高控制精度"""
# 保持符号,但对数值应用平方映射以提高精度
sign = 1 if value >= 0 else -1
return sign * (abs(value) ** 2)
def _normalize_angle(self, angle):
"""将角度归一化到[-180, 180]范围内"""
while angle > 180:
angle -= 360
while angle < -180:
angle += 360
return angle
def update_controller(self):
while self.running:
try:
pygame.event.pump()
except Exception as e:
print(f"控制器错误: {e}")
self.stop()
continue
# 检查控制模式切换 (使用左摇杆按钮)
if self.joystick.get_button(9): # 左摇杆按钮
self.end_pose_mode = not self.end_pose_mode
print(f"切换到{'末端位姿控制' if self.end_pose_mode else '关节控制'}模式")
time.sleep(0.3) # 防止多次触发
# 检查精细控制模式切换 (使用L3按钮)
if self.joystick.get_button(10): # L3按钮
self.fine_control_mode = not self.fine_control_mode
print(f"切换到{'精细' if self.fine_control_mode else '普通'}控制模式")
time.sleep(0.3) # 防止多次触发
# 检查重置按钮 (7号按钮通常是Start按钮)
if self.joystick.get_button(7): # Start按钮
print("重置机械臂到0位...")
# 重置关节和位姿
self.joints = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
self.joint_speeds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
self.gripper = 0.0
self.gripper_speed = 0.0
# 临时切换到关节控制模式
self.end_pose_mode = False
print("机械臂已重置到0位")
time.sleep(0.3) # 防止多次触发
# 根据控制模式获取输入并更新状态
if self.end_pose_mode:
self.update_end_pose()
else:
self.update_joints()
# 夹爪控制(圈/叉)- 两种模式下都保持一致
circle = self.joystick.get_button(1) # 夹爪开
cross = self.joystick.get_button(0) # 夹爪关
self.gripper_speed = 0.01 if circle else (-0.01 if cross else 0.0)
# 更新夹爪
self.gripper += self.gripper_speed
self.gripper = max(0.0, min(0.08, self.gripper))
time.sleep(0.02)
def update_end_pose(self):
"""更新末端位姿控制"""
# 根据控制模式调整步长
current_linear_step = self.linear_step * (0.1 if self.fine_control_mode else 1.0)
current_angular_step = self.angular_step * (0.1 if self.fine_control_mode else 1.0)
# 方向键控制XY
hat = self.joystick.get_hat(0)
hat_up = hat[1] == 1 # Y+
hat_down = hat[1] == -1 # Y-
hat_left = hat[0] == -1 # X-
hat_right = hat[0] == 1 # X+
# 右摇杆控制Z
right_y = -self.joystick.get_axis(4) # Z控制取反使向上为正
# 左摇杆控制RZ
left_y = -self.joystick.get_axis(1) # RZ控制取反使向上为正
# 应用死区
right_y = 0.0 if abs(right_y) < self.deadzone else right_y
left_y = 0.0 if abs(left_y) < self.deadzone else left_y
self.pose_speeds[0] = current_linear_step if hat_up else (-current_linear_step if hat_down else 0.0) # X
self.pose_speeds[1] = current_linear_step if hat_left else (-current_linear_step if hat_right else 0.0) # Y
# 设置Z速度右摇杆Y轴控制
self.pose_speeds[2] = self._apply_nonlinear_mapping(right_y) * current_linear_step # Z
# L1/R1控制RX旋转
LB = self.joystick.get_button(4) # RX-
RB = self.joystick.get_button(5) # RX+
self.pose_speeds[3] = (-current_angular_step if LB else (current_angular_step if RB else 0.0))
# △/□控制RY旋转
triangle = self.joystick.get_button(2) # RY+
square = self.joystick.get_button(3) # RY-
self.pose_speeds[4] = (current_angular_step if triangle else (-current_angular_step if square else 0.0))
# 左摇杆Y轴控制RZ旋转
self.pose_speeds[5] = self._apply_nonlinear_mapping(left_y) * current_angular_step * 2 # RZ增加系数使旋转更明显
# 更新末端位姿
for i in range(6):
self.pose[i] += self.pose_speeds[i]
# 位置限制
for i in range(3):
min_val, max_val = self.pose_limits[i]
self.pose[i] = max(min_val, min(max_val, self.pose[i]))
# 角度归一化处理
for i in range(3, 6):
self.pose[i] = self._normalize_angle(self.pose[i])
def update_joints(self):
"""更新关节控制"""
# 根据控制模式调整步长
current_joint_step = self.joint_step * (0.1 if self.fine_control_mode else 1.0)
# 使用类似于末端位姿控制的映射,但直接控制关节
# 左摇杆控制关节1和2 (类似于末端位姿控制中的X和Y)
left_x = -self.joystick.get_axis(0) # 左摇杆x轴
left_y = -self.joystick.get_axis(1) # 左摇杆y轴
# 应用死区
left_x = 0.0 if abs(left_x) < self.deadzone else left_x
left_y = 0.0 if abs(left_y) < self.deadzone else left_y
# 右摇杆控制关节3和4
right_x = self.joystick.get_axis(3) # 右摇杆x轴
right_y = self.joystick.get_axis(4) # 右摇杆y轴
# 应用死区
right_x = 0.0 if abs(right_x) < self.deadzone else right_x
right_y = 0.0 if abs(right_y) < self.deadzone else right_y
# 方向键控制关节5和6
hat = self.joystick.get_hat(0)
up = hat[1] == 1
down = hat[1] == -1
left = hat[0] == -1
right = hat[0] == 1
# 映射输入到关节速度
self.joint_speeds[0] = left_x * current_joint_step # joint1速度
self.joint_speeds[1] = left_y * current_joint_step # joint2速度
self.joint_speeds[2] = right_y * current_joint_step # joint3速度
self.joint_speeds[3] = right_x * current_joint_step # joint4速度
self.joint_speeds[4] = -current_joint_step if up else (current_joint_step if down else 0.0) # joint5速度
self.joint_speeds[5] = current_joint_step if right else (-current_joint_step if left else 0.0) # joint6速度
# 积分速度到关节位置
for i in range(6):
self.joints[i] += self.joint_speeds[i]
# 关节范围保护
for i in range(6):
min_val, max_val = self.joint_limits[i]
self.joints[i] = max(min_val, min(max_val, self.joints[i]))
def update_state(self, ctrl_mode, end_pose, joint_state):
if ctrl_mode == 'end_pose':
_joint_state = [0] * 6
_joint_state[0] = joint_state.joint_1 / 57324.840764
_joint_state[1] = joint_state.joint_2 / 57324.840764
_joint_state[2] = joint_state.joint_3 / 57324.840764
_joint_state[3] = joint_state.joint_4 / 57324.840764
_joint_state[4] = joint_state.joint_5 / 57324.840764
_joint_state[5] = joint_state.joint_6 / 57324.840764
self.joints = _joint_state
else:
_end_pose = [0] * 6
_end_pose[0] = end_pose.X_axis / 1000 / 1000
_end_pose[1] = end_pose.Y_axis / 1000 / 1000
_end_pose[2] = end_pose.Z_axis / 1000 / 1000
_end_pose[3] = end_pose.RX_axis / 1000
_end_pose[4] = end_pose.RY_axis / 1000
_end_pose[5] = end_pose.RZ_axis / 1000
self.pose = _end_pose
def get_action(self) -> Dict:
"""获取当前控制命令"""
if self.end_pose_mode:
# 返回末端位姿
return {
'X': self.pose[0],
'Y': self.pose[1],
'Z': self.pose[2],
'RX': self.pose[3],
'RY': self.pose[4],
'RZ': self.pose[5],
'gripper': self.gripper
}
else:
# 返回关节角度
return {
'joint0': self.joints[0],
'joint1': self.joints[1],
'joint2': self.joints[2],
'joint3': self.joints[3],
'joint4': self.joints[4],
'joint5': self.joints[5],
'gripper': self.gripper
}
def get_joints(self) -> Dict:
return {
'joint0': self.joints[0],
'joint1': self.joints[1],
'joint2': self.joints[2],
'joint3': self.joints[3],
'joint4': self.joints[4],
'joint5': self.joints[5],
'gripper': self.gripper
}
def get_control_mode(self):
"""返回当前控制模式"""
return "end_pose" if self.end_pose_mode else "joints"
def stop(self):
"""停止控制器"""
self.running = False
if self.thread.is_alive():
self.thread.join()
pygame.quit()
print("控制器已退出")
def reset(self):
"""重置到初始状态"""
self.joints = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
self.joint_speeds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
self.pose = [0.056127, 0, 0.213266, 0, 84.999, 0]
self.pose_speeds = [0.0] * 6
self.gripper = 0.0
self.gripper_speed = 0.0
print("已重置到初始状态")
# 使用示例
if __name__ == "__main__":
arm_controller = SixAxisArmController()
try:
while True:
print(arm_controller.get_action())
time.sleep(0.1)
except KeyboardInterrupt:
arm_controller.stop()
# arm_controller = SixAxisArmController()
# try:
# while True:
# print(arm_controller.get_action())
# time.sleep(0.1)
# except KeyboardInterrupt:
# arm_controller.stop()
from piper_sdk import *
def enable_fun(piper:C_PiperInterface_V2):
'''
使能机械臂并检测使能状态,尝试5s,如果使能超时则退出程序
'''
enable_flag = False
# 设置超时时间(秒)
timeout = 5
# 记录进入循环前的时间
start_time = time.time()
elapsed_time_flag = False
while not (enable_flag):
elapsed_time = time.time() - start_time
print("--------------------")
enable_flag = piper.GetArmLowSpdInfoMsgs().motor_1.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_2.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_3.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_4.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_5.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_6.foc_status.driver_enable_status
print("使能状态:",enable_flag)
piper.EnableArm(7)
piper.GripperCtrl(0,1000,0x01, 0)
print("--------------------")
# 检查是否超过超时时间
if elapsed_time > timeout:
print("超时....")
elapsed_time_flag = True
enable_flag = True
break
time.sleep(1)
pass
if(elapsed_time_flag):
print("程序自动使能超时,退出程序")
exit(0)
piper = C_PiperInterface_V2("can0")
piper.ConnectPort()
piper.EnableArm(7)
enable_fun(piper=piper)
piper.GripperCtrl(0,1000,0x01, 0)
teleop = UnifiedArmController()
factor = 1000
while True:
# 获取当前控制命令
action = teleop.get_action()
control_mode = teleop.get_control_mode()
if control_mode == "end_pose":
# 末端位姿控制
position = list(action.values())
X = round(position[0]*factor*factor)
Y = round(position[1]*factor*factor)
Z = round(position[2]*factor*factor)
RX = round(position[3]*factor)
RY = round(position[4]*factor)
RZ = round(position[5]*factor)
joint_6 = round(position[6]*factor*factor)
piper.MotionCtrl_2(0x01, 0x00, 100, 0x00)
piper.EndPoseCtrl(X, Y, Z, RX, RY, RZ)
piper.GripperCtrl(abs(joint_6), 1000, 0x01, 0)
new_end_pose = piper.GetArmEndPoseMsgs().end_pose
new_joint_state = piper.GetArmJointMsgs().joint_state
teleop.update_state(control_mode, new_end_pose, new_joint_state)
print("控制模式: 末端控制")
print("末端位置", new_end_pose)
print("关节位置:", new_joint_state)
else:
# 关节控制
joints = list(action.values())
# 将关节角度转换为适合发送的格式
joint0 = round(joints[0] * 57324.840764) # 转换为机械臂期望的单位
joint1 = round(joints[1] * 57324.840764)
joint2 = round(joints[2] * 57324.840764)
joint3 = round(joints[3] * 57324.840764)
joint4 = round(joints[4] * 57324.840764)
joint5 = round(joints[5] * 57324.840764)
gripper = round(joints[6] * 1000 * 1000)
# 发送关节控制命令
piper.MotionCtrl_2(0x01, 0x01, 100, 0x00)
piper.JointCtrl(joint0, joint1, joint2, joint3, joint4, joint5)
piper.GripperCtrl(abs(gripper), 1000, 0x01, 0)
new_end_pose = piper.GetArmEndPoseMsgs().end_pose
new_joint_state = piper.GetArmJointMsgs().joint_state
teleop.update_state(control_mode, new_end_pose, new_joint_state)
print("控制模式: 关节控制")
print("末端位置", new_end_pose)
print("关节位置:", new_joint_state)
time.sleep(0.1)

View File

@@ -291,6 +291,28 @@ def record(
single_task=cfg.single_task,
)
# 录制完成后等待用户确认是否保存
if not events["stop_recording"] and not events["rerecord_episode"]:
log_say("Episode recorded. Press Enter to save, Backspace to discard, Esc to end session", cfg.play_sounds)
print("Confirmation controls: Enter to save, Backspace to discard, Esc to end recording session")
# 等待用户确认是否保存该段录制
waiting_for_confirmation = True
events["confirm_save"] = False
events["discard_episode"] = False
while waiting_for_confirmation and not events["stop_recording"]:
time.sleep(0.1)
if events["confirm_save"]:
log_say("Saving episode", cfg.play_sounds)
waiting_for_confirmation = False
elif events["discard_episode"]:
log_say("Discarding episode", cfg.play_sounds)
events["rerecord_episode"] = True
waiting_for_confirmation = False
elif events["stop_recording"]:
waiting_for_confirmation = False
# Execute a few seconds without recording to give time to manually reset the environment
# Current code logic doesn't allow to teleoperate during this time.
# TODO(rcadene): add an option to enable teleoperation during reset

View File

@@ -0,0 +1,300 @@
#!/usr/bin/env python3
# -*-coding:utf8-*-
# 注意demo无法直接运行需要pip安装sdk后才能运行
from typing import (
Optional,
)
import time
from piper_sdk import *
import pygame
import threading
import time
from typing import Dict
def enable_fun(piper:C_PiperInterface_V2):
'''
使能机械臂并检测使能状态,尝试5s,如果使能超时则退出程序
'''
enable_flag = False
# 设置超时时间(秒)
timeout = 5
# 记录进入循环前的时间
start_time = time.time()
elapsed_time_flag = False
while not (enable_flag):
elapsed_time = time.time() - start_time
print("--------------------")
enable_flag = piper.GetArmLowSpdInfoMsgs().motor_1.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_2.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_3.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_4.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_5.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_6.foc_status.driver_enable_status
print("使能状态:",enable_flag)
piper.EnableArm(7)
piper.GripperCtrl(0,1000,0x01, 0)
print("--------------------")
# 检查是否超过超时时间
if elapsed_time > timeout:
print("超时....")
elapsed_time_flag = True
enable_flag = True
break
time.sleep(1)
pass
if(elapsed_time_flag):
print("程序自动使能超时,退出程序")
exit(0)
class EndPoseController:
def __init__(self):
pygame.init()
pygame.joystick.init()
if pygame.joystick.get_count() == 0:
raise Exception("未检测到手柄")
self.joystick = pygame.joystick.Joystick(0)
self.joystick.init()
# 末端初始姿态 [X, Y, Z, RX, RY, RZ]
# {'X': 56127, 'Y': 0, 'Z': 213266, 'RX': 0, 'RY': 84999, 'RZ': 0, 'gripper': -70} # 右臂
self.pose = [0.056127, 0, 0.213266, 0, 84.999, 0]
self.speeds = [0.0] * 6
# 夹爪状态和速度
self.gripper = 0.0
self.gripper_speed = 0.0
# 末端位姿限制
self.pose_limits = [
(-0.6, 0.6), # X (m)
(-0.6, 0.6), # Y (m)
(0.05, 0.6), # Z (m) - 设置最小高度防止碰撞
(-180, 180), # RX (deg)
(-180, 180), # RY (deg)
(-180, 180) # RZ (deg)
]
# 控制参数
self.linear_step = 0.003 # 线性移动步长(m),降低以提高精度
self.angular_step = 0.1 # 角度步长(deg),提高以便更好控制
# 摇杆死区
self.deadzone = 0.15
# 控制模式
self.fine_control_mode = False # 精细控制模式
self.running = True
self.thread = threading.Thread(target=self.update_pose)
self.thread.start()
print("末端位姿控制器已启动")
print("使用方向键上下左右控制XY右摇杆控制Z")
print("L1/R1控制RX△/□控制RY右摇杆Y轴控制RZ")
print("按下L3(左摇杆按下)切换精细/普通控制模式")
def update_pose(self):
while self.running:
try:
pygame.event.pump()
except Exception as e:
print(f"控制器错误: {e}")
self.stop()
continue
# 检查精细控制模式切换
if self.joystick.get_button(10): # L3按钮
self.fine_control_mode = not self.fine_control_mode
print(f"切换到{'精细' if self.fine_control_mode else '普通'}控制模式")
time.sleep(0.3) # 防止多次触发
# 根据控制模式调整步长
current_linear_step = self.linear_step * (0.1 if self.fine_control_mode else 1.0)
current_angular_step = self.angular_step * (0.1 if self.fine_control_mode else 1.0)
# 方向键控制XY
hat = self.joystick.get_hat(0)
hat_up = hat[1] == 1 # Y+
hat_down = hat[1] == -1 # Y-
hat_left = hat[0] == -1 # X-
hat_right = hat[0] == 1 # X+
# 右摇杆控制Z和RZ
right_y = -self.joystick.get_axis(4) # Z控制取反使向上为正
left_y = -self.joystick.get_axis(1) # RZ控制取反使向上为正
# 应用死区
right_y = 0.0 if abs(right_y) < self.deadzone else right_y
left_y = 0.0 if abs(left_y) < self.deadzone else left_y
# 设置XY速度方向键控制
# self.speeds[0] = current_linear_step if hat_right else (-current_linear_step if hat_left else 0.0) # X
# self.speeds[1] = current_linear_step if hat_up else (-current_linear_step if hat_down else 0.0) # Y
self.speeds[0] = current_linear_step if hat_up else (-current_linear_step if hat_down else 0.0) # X
self.speeds[1] = current_linear_step if hat_left else (-current_linear_step if hat_right else 0.0) # Y
# 设置Z速度右摇杆Y轴控制
self.speeds[2] = self._apply_nonlinear_mapping(right_y) * current_linear_step # Z
# L1/R1控制RX旋转
LB = self.joystick.get_button(4) # RX-
RB = self.joystick.get_button(5) # RX+
self.speeds[3] = (-current_angular_step if LB else (current_angular_step if RB else 0.0))
# △/□控制RY旋转
triangle = self.joystick.get_button(2) # RY+
square = self.joystick.get_button(3) # RY-
self.speeds[4] = (current_angular_step if triangle else (-current_angular_step if square else 0.0))
# 左摇杆Y轴控制RZ旋转
self.speeds[5] = self._apply_nonlinear_mapping(left_y) * current_angular_step * 2 # RZ增加系数使旋转更明显
# 夹爪控制(圈/叉)
circle = self.joystick.get_button(1) # 夹爪开
cross = self.joystick.get_button(0) # 夹爪关
self.gripper_speed = 0.01 if circle else (-0.01 if cross else 0.0)
# 更新末端位姿
for i in range(6):
self.pose[i] += self.speeds[i]
# 位置限制
for i in range(3):
min_val, max_val = self.pose_limits[i]
self.pose[i] = max(min_val, min(max_val, self.pose[i]))
# 角度归一化处理
for i in range(3, 6):
self.pose[i] = self._normalize_angle(self.pose[i])
# 更新夹爪
self.gripper += self.gripper_speed
self.gripper = max(0.0, min(0.08, self.gripper))
time.sleep(0.02)
def _normalize_angle(self, angle):
"""将角度归一化到[-180, 180]范围内"""
while angle > 180:
angle -= 360
while angle < -180:
angle += 360
return angle
def _apply_nonlinear_mapping(self, value):
"""应用非线性映射以提高控制精度"""
# 保持符号,但对数值应用平方映射以提高精度
sign = 1 if value >= 0 else -1
return sign * (abs(value) ** 2)
def get_action(self) -> Dict:
"""获取当前末端位姿和夹爪状态"""
return {
'X': self.pose[0]*1000,
'Y': self.pose[1]*1000,
'Z': self.pose[2]*1000,
'RX': self.pose[3],
'RY': self.pose[4],
'RZ': self.pose[5],
'gripper': self.gripper*1000
}
def stop(self):
"""停止控制器"""
self.running = False
if self.thread.is_alive():
self.thread.join()
pygame.quit()
print("末端位姿控制器已退出")
def reset(self):
"""重置到初始位姿"""
self.pose = [0.056127, 0, 0.213266, 0, 84.999, 0] # 使用您提供的初始位姿
self.speeds = [0.0] * 6
self.gripper = 0.0
self.gripper_speed = 0.0
print("已重置到初始位姿")
if __name__ == "__main__":
piper = C_PiperInterface_V2("can0")
piper.ConnectPort()
piper.EnableArm(7)
enable_fun(piper=piper)
piper.GripperCtrl(0,1000,0x01, 0)
factor = 1000
position = [
55.0, \
0.0, \
206.0, \
0, \
85.0, \
0, \
0]
# position = [0.0, \
# 0.0, \
# 80.0, \
# 0, \
# 203.386, \
# 0, \
# 0.8]
count = 0
teleop = EndPoseController()
while True:
print(piper.GetArmEndPoseMsgs())
# print(piper.GetArmStatus())
import time
# count = count + 1
# # print(count)
# if(count == 0):
# print("1-----------")
# position = [
# 55.0, \
# 0.0, \
# 206.0, \
# 0, \
# 85.0, \
# 0, \
# 0]
# elif(count == 200):
# print("2-----------")
# position = [
# 55.0, \
# 0.0, \
# 260.0, \
# 0, \
# 85.0, \
# 0, \
# 0]
# elif(count == 400):
# print("1-----------")
# position = [
# 55.0, \
# 0.0, \
# 280.0, \
# 0, \
# 85.0, \
# 0, \
# 0]
# count = 0
position = teleop.get_action()
position = list(position.values())
X = round(position[0]*factor)
Y = round(position[1]*factor)
Z = round(position[2]*factor)
RX = round(position[3]*factor)
RY = round(position[4]*factor)
RZ = round(position[5]*factor)
joint_6 = round(position[6]*factor)
print(X,Y,Z,RX,RY,RZ, joint_6)
# piper.MotionCtrl_1()
piper.MotionCtrl_2(0x01, 0x00, 100, 0x00)
piper.EndPoseCtrl(X,Y,Z,RX,RY,RZ)
piper.GripperCtrl(abs(joint_6), 1000, 0x01, 0)
time.sleep(0.1)
pass

View File

@@ -0,0 +1,415 @@
#!/usr/bin/env python3
# -*-coding:utf8-*-
from typing import Optional
import time
from piper_sdk import *
import pygame
import threading
from typing import Dict
def enable_fun(piper:C_PiperInterface_V2):
'''
使能机械臂并检测使能状态,尝试5s,如果使能超时则退出程序
'''
enable_flag = False
# 设置超时时间(秒)
timeout = 5
# 记录进入循环前的时间
start_time = time.time()
elapsed_time_flag = False
while not (enable_flag):
elapsed_time = time.time() - start_time
print("--------------------")
enable_flag = piper.GetArmLowSpdInfoMsgs().motor_1.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_2.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_3.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_4.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_5.foc_status.driver_enable_status and \
piper.GetArmLowSpdInfoMsgs().motor_6.foc_status.driver_enable_status
print("使能状态:",enable_flag)
piper.EnableArm(7)
piper.GripperCtrl(0,1000,0x01, 0)
print("--------------------")
# 检查是否超过超时时间
if elapsed_time > timeout:
print("超时....")
elapsed_time_flag = True
enable_flag = True
break
time.sleep(1)
pass
if(elapsed_time_flag):
print("程序自动使能超时,退出程序")
exit(0)
class UnifiedArmController:
def __init__(self):
# 初始化pygame和手柄
pygame.init()
pygame.joystick.init()
# 检查是否有连接的手柄
if pygame.joystick.get_count() == 0:
raise Exception("未检测到手柄")
# 初始化手柄
self.joystick = pygame.joystick.Joystick(0)
self.joystick.init()
# 控制模式标志 - True为末端位姿控制False为关节控制
self.end_pose_mode = False
# 摇杆死区
self.deadzone = 0.15
# 精细控制模式
self.fine_control_mode = False
# 初始化关节状态
self.joints = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # 6个关节
self.joint_speeds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # 6个关节的速度
# 关节弧度限制
self.joint_limits = [
(-92000 / 57324.840764, 92000 / 57324.840764), # joint1
( 0 / 57324.840764, 120000 / 57324.840764), # joint2
(-80000 / 57324.840764, 0 / 57324.840764), # joint3
(-90000 / 57324.840764, 90000 / 57324.840764), # joint4
(-65000 / 57324.840764, 65000 / 57324.840764), # joint5
(-90000 / 57324.840764, 90000 / 57324.840764) # joint6
]
# 初始化末端姿态 [X, Y, Z, RX, RY, RZ]
self.pose = [0.056127, 0, 0.213266, 0, 84.999, 0]
self.pose_speeds = [0.0] * 6
# 末端位姿限制
self.pose_limits = [
(-0.6, 0.6), # X (m)
(-0.6, 0.6), # Y (m)
(0.05, 0.6), # Z (m) - 设置最小高度防止碰撞
(-180, 180), # RX (deg)
(-180, 180), # RY (deg)
(-180, 180) # RZ (deg)
]
# 控制参数
self.linear_step = 0.0015 # 线性移动步长(m)
self.angular_step = 0.05 # 角度步长(deg)
self.joint_step = 0.015 # 关节步长(rad)
# 夹爪状态和速度
self.gripper = 0.0
self.gripper_speed = 0.0
# 启动更新线程
self.running = True
self.thread = threading.Thread(target=self.update_controller)
self.thread.start()
print("机械臂统一控制器已启动")
print("按下OPTIONS(Start)切换控制模式")
print("当前模式:", "末端位姿控制" if self.end_pose_mode else "关节控制")
def _apply_nonlinear_mapping(self, value):
"""应用非线性映射以提高控制精度"""
# 保持符号,但对数值应用平方映射以提高精度
sign = 1 if value >= 0 else -1
return sign * (abs(value) ** 2)
def _normalize_angle(self, angle):
"""将角度归一化到[-180, 180]范围内"""
while angle > 180:
angle -= 360
while angle < -180:
angle += 360
return angle
def update_controller(self):
while self.running:
try:
pygame.event.pump()
except Exception as e:
print(f"控制器错误: {e}")
self.stop()
continue
# 检查控制模式切换 (使用左摇杆按钮)
if self.joystick.get_button(9): # 左摇杆按钮
self.end_pose_mode = not self.end_pose_mode
print(f"切换到{'末端位姿控制' if self.end_pose_mode else '关节控制'}模式")
time.sleep(0.3) # 防止多次触发
# 检查精细控制模式切换 (使用L3按钮)
if self.joystick.get_button(10): # L3按钮
self.fine_control_mode = not self.fine_control_mode
print(f"切换到{'精细' if self.fine_control_mode else '普通'}控制模式")
time.sleep(0.3) # 防止多次触发
# 检查重置按钮 (7号按钮通常是Start按钮)
if self.joystick.get_button(7): # Start按钮
print("重置机械臂到0位...")
# 重置关节和位姿
self.joints = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
self.joint_speeds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
self.gripper = 0.0
self.gripper_speed = 0.0
# 临时切换到关节控制模式
self.end_pose_mode = False
print("机械臂已重置到0位")
time.sleep(0.3) # 防止多次触发
# 根据控制模式获取输入并更新状态
if self.end_pose_mode:
self.update_end_pose()
else:
self.update_joints()
# 夹爪控制(圈/叉)- 两种模式下都保持一致
circle = self.joystick.get_button(1) # 夹爪开
cross = self.joystick.get_button(0) # 夹爪关
self.gripper_speed = 0.01 if circle else (-0.01 if cross else 0.0)
# 更新夹爪
self.gripper += self.gripper_speed
self.gripper = max(0.0, min(0.08, self.gripper))
time.sleep(0.02)
def update_end_pose(self):
"""更新末端位姿控制"""
# 根据控制模式调整步长
current_linear_step = self.linear_step * (0.1 if self.fine_control_mode else 1.0)
current_angular_step = self.angular_step * (0.1 if self.fine_control_mode else 1.0)
# 方向键控制XY
hat = self.joystick.get_hat(0)
hat_up = hat[1] == 1 # Y+
hat_down = hat[1] == -1 # Y-
hat_left = hat[0] == -1 # X-
hat_right = hat[0] == 1 # X+
# 右摇杆控制Z
right_y = -self.joystick.get_axis(4) # Z控制取反使向上为正
# 左摇杆控制RZ
left_y = -self.joystick.get_axis(1) # RZ控制取反使向上为正
# 应用死区
right_y = 0.0 if abs(right_y) < self.deadzone else right_y
left_y = 0.0 if abs(left_y) < self.deadzone else left_y
self.pose_speeds[0] = current_linear_step if hat_up else (-current_linear_step if hat_down else 0.0) # X
self.pose_speeds[1] = current_linear_step if hat_left else (-current_linear_step if hat_right else 0.0) # Y
# 设置Z速度右摇杆Y轴控制
self.pose_speeds[2] = self._apply_nonlinear_mapping(right_y) * current_linear_step # Z
# L1/R1控制RX旋转
LB = self.joystick.get_button(4) # RX-
RB = self.joystick.get_button(5) # RX+
self.pose_speeds[3] = (-current_angular_step if LB else (current_angular_step if RB else 0.0))
# △/□控制RY旋转
triangle = self.joystick.get_button(2) # RY+
square = self.joystick.get_button(3) # RY-
self.pose_speeds[4] = (current_angular_step if triangle else (-current_angular_step if square else 0.0))
# 左摇杆Y轴控制RZ旋转
self.pose_speeds[5] = self._apply_nonlinear_mapping(left_y) * current_angular_step * 2 # RZ增加系数使旋转更明显
# 更新末端位姿
for i in range(6):
self.pose[i] += self.pose_speeds[i]
# 位置限制
for i in range(3):
min_val, max_val = self.pose_limits[i]
self.pose[i] = max(min_val, min(max_val, self.pose[i]))
# 角度归一化处理
for i in range(3, 6):
self.pose[i] = self._normalize_angle(self.pose[i])
def update_joints(self):
"""更新关节控制"""
# 根据控制模式调整步长
current_joint_step = self.joint_step * (0.1 if self.fine_control_mode else 1.0)
# 使用类似于末端位姿控制的映射,但直接控制关节
# 左摇杆控制关节1和2 (类似于末端位姿控制中的X和Y)
left_x = -self.joystick.get_axis(0) # 左摇杆x轴
left_y = -self.joystick.get_axis(1) # 左摇杆y轴
# 应用死区
left_x = 0.0 if abs(left_x) < self.deadzone else left_x
left_y = 0.0 if abs(left_y) < self.deadzone else left_y
# 右摇杆控制关节3和4
right_x = self.joystick.get_axis(3) # 右摇杆x轴
right_y = self.joystick.get_axis(4) # 右摇杆y轴
# 应用死区
right_x = 0.0 if abs(right_x) < self.deadzone else right_x
right_y = 0.0 if abs(right_y) < self.deadzone else right_y
# 方向键控制关节5和6
hat = self.joystick.get_hat(0)
up = hat[1] == 1
down = hat[1] == -1
left = hat[0] == -1
right = hat[0] == 1
# 映射输入到关节速度
self.joint_speeds[0] = left_x * current_joint_step # joint1速度
self.joint_speeds[1] = left_y * current_joint_step # joint2速度
self.joint_speeds[2] = right_y * current_joint_step # joint3速度
self.joint_speeds[3] = right_x * current_joint_step # joint4速度
self.joint_speeds[4] = -current_joint_step if up else (current_joint_step if down else 0.0) # joint5速度
self.joint_speeds[5] = current_joint_step if right else (-current_joint_step if left else 0.0) # joint6速度
# 积分速度到关节位置
for i in range(6):
self.joints[i] += self.joint_speeds[i]
# 关节范围保护
for i in range(6):
min_val, max_val = self.joint_limits[i]
self.joints[i] = max(min_val, min(max_val, self.joints[i]))
def update_state(self, ctrl_mode, end_pose, joint_state):
if ctrl_mode == 'end_pose':
_joint_state = [0] * 6
_joint_state[0] = joint_state.joint_1 / 57324.840764
_joint_state[1] = joint_state.joint_2 / 57324.840764
_joint_state[2] = joint_state.joint_3 / 57324.840764
_joint_state[3] = joint_state.joint_4 / 57324.840764
_joint_state[4] = joint_state.joint_5 / 57324.840764
_joint_state[5] = joint_state.joint_6 / 57324.840764
self.joints = _joint_state
else:
_end_pose = [0] * 6
_end_pose[0] = end_pose.X_axis / 1000 / 1000
_end_pose[1] = end_pose.Y_axis / 1000 / 1000
_end_pose[2] = end_pose.Z_axis / 1000 / 1000
_end_pose[3] = end_pose.RX_axis / 1000
_end_pose[4] = end_pose.RY_axis / 1000
_end_pose[5] = end_pose.RZ_axis / 1000
self.pose = _end_pose
def get_action(self) -> Dict:
"""获取当前控制命令"""
if self.end_pose_mode:
# 返回末端位姿
return {
'X': self.pose[0],
'Y': self.pose[1],
'Z': self.pose[2],
'RX': self.pose[3],
'RY': self.pose[4],
'RZ': self.pose[5],
'gripper': self.gripper
}
else:
# 返回关节角度
return {
'joint0': self.joints[0],
'joint1': self.joints[1],
'joint2': self.joints[2],
'joint3': self.joints[3],
'joint4': self.joints[4],
'joint5': self.joints[5],
'gripper': self.gripper
}
def get_control_mode(self):
"""返回当前控制模式"""
return "end_pose" if self.end_pose_mode else "joints"
def stop(self):
"""停止控制器"""
self.running = False
if self.thread.is_alive():
self.thread.join()
pygame.quit()
print("控制器已退出")
def reset(self):
"""重置到初始状态"""
self.joints = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
self.joint_speeds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
self.pose = [0.056127, 0, 0.213266, 0, 84.999, 0]
self.pose_speeds = [0.0] * 6
self.gripper = 0.0
self.gripper_speed = 0.0
print("已重置到初始状态")
if __name__ == "__main__":
piper = C_PiperInterface_V2("can0")
piper.ConnectPort()
piper.EnableArm(7)
enable_fun(piper=piper)
piper.GripperCtrl(0,1000,0x01, 0)
teleop = UnifiedArmController()
factor = 1000
while True:
# 获取当前控制命令
action = teleop.get_action()
control_mode = teleop.get_control_mode()
if control_mode == "end_pose":
# 末端位姿控制
position = list(action.values())
X = round(position[0]*factor*factor)
Y = round(position[1]*factor*factor)
Z = round(position[2]*factor*factor)
RX = round(position[3]*factor)
RY = round(position[4]*factor)
RZ = round(position[5]*factor)
joint_6 = round(position[6]*factor*factor)
piper.MotionCtrl_2(0x01, 0x00, 100, 0x00)
piper.EndPoseCtrl(X, Y, Z, RX, RY, RZ)
piper.GripperCtrl(abs(joint_6), 1000, 0x01, 0)
new_end_pose = piper.GetArmEndPoseMsgs().end_pose
new_joint_state = piper.GetArmJointMsgs().joint_state
teleop.update_state(control_mode, new_end_pose, new_joint_state)
print("控制模式: 末端控制")
print("末端位置", new_end_pose)
print("关节位置:", new_joint_state)
else:
# 关节控制
joints = list(action.values())
# 将关节角度转换为适合发送的格式
joint0 = round(joints[0] * 57324.840764) # 转换为机械臂期望的单位
joint1 = round(joints[1] * 57324.840764)
joint2 = round(joints[2] * 57324.840764)
joint3 = round(joints[3] * 57324.840764)
joint4 = round(joints[4] * 57324.840764)
joint5 = round(joints[5] * 57324.840764)
gripper = round(joints[6] * 1000 * 1000)
# 发送关节控制命令
piper.MotionCtrl_2(0x01, 0x01, 100, 0x00)
piper.JointCtrl(joint0, joint1, joint2, joint3, joint4, joint5)
piper.GripperCtrl(abs(gripper), 1000, 0x01, 0)
new_end_pose = piper.GetArmEndPoseMsgs().end_pose
new_joint_state = piper.GetArmJointMsgs().joint_state
teleop.update_state(control_mode, new_end_pose, new_joint_state)
print("控制模式: 关节控制")
print("末端位置", new_end_pose)
print("关节位置:", new_joint_state)
time.sleep(0.1)