from pathlib import Path import hydra import imageio import numpy as np import torch from termcolor import colored from ..lib.envs import make_env from ..lib.utils import set_seed def eval_agent( env, agent, num_episodes: int, save_video: bool = False, video_path: Path = None ): """Evaluate a trained agent and optionally save a video.""" if save_video: assert video_path is not None assert video_path.suffix == ".mp4" episode_rewards = [] episode_successes = [] episode_lengths = [] for i in range(num_episodes): obs, done, ep_reward, t = env.reset(), False, 0, 0 ep_success = False if save_video: frames = [] while not done: action = agent.act(obs, t0=t == 0, eval_mode=True, step=step) obs, reward, done, info = env.step(action.cpu().numpy()) ep_reward += reward if "success" in info and info["success"]: ep_success = True if save_video: frame = env.render( mode="rgb_array", # TODO(rcadene): make height, width, camera_id configurable height=384, width=384, camera_id=0, ) frames.append(frame) t += 1 episode_rewards.append(float(ep_reward)) episode_successes.append(float(ep_success)) episode_lengths.append(t) if save_video: frames = np.stack(frames).transpose(0, 3, 1, 2) video_path.parent.mkdir(parents=True, exist_ok=True) # TODO(rcadene): make fps configurable imageio.mimsave(video_path, frames, fps=15) return { "episode_reward": np.nanmean(episode_rewards), "episode_success": np.nanmean(episode_successes), "episode_length": np.nanmean(episode_lengths), } @hydra.main(version_base=None, config_name="default", config_path="../configs") def eval(cfg: dict): assert torch.cuda.is_available() set_seed(cfg.seed) print(colored("Log dir:", "yellow", attrs=["bold"]), cfg.log_dir) env = make_env(cfg) eval_metrics = eval_agent(env, agent, num_episodes=10, save_video=True) if __name__ == "__main__": eval()