import time import hydra import numpy as np import torch from tensordict.nn import TensorDictModule from termcolor import colored from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer from torchrl.data.replay_buffers import PrioritizedSliceSampler from lerobot.common.datasets.factory import make_offline_buffer from lerobot.common.envs.factory import make_env from lerobot.common.logger import Logger from lerobot.common.policies.factory import make_policy from lerobot.common.utils import set_seed from lerobot.scripts.eval import eval_policy @hydra.main(version_base=None, config_name="default", config_path="../configs") def train_cli(cfg: dict): train( cfg, out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir, job_name=hydra.core.hydra_config.HydraConfig.get().job.name, ) def train_notebook(out_dir=None, job_name=None, config_name="default", config_path="../configs"): from hydra import compose, initialize hydra.core.global_hydra.GlobalHydra.instance().clear() initialize(config_path=config_path) cfg = compose(config_name=config_name) train(cfg, out_dir=out_dir, job_name=job_name) def log_training_metrics(logger, metrics, step, online_episode_idx, start_time, is_offline): common_metrics = { "episode": online_episode_idx, "step": step, "total_time": time.time() - start_time, "is_offline": float(is_offline), } metrics.update(common_metrics) logger.log(metrics, category="train") def eval_policy_and_log(env, td_policy, step, online_episode_idx, start_time, cfg, logger, is_offline): common_metrics = { "episode": online_episode_idx, "step": step, "total_time": time.time() - start_time, "is_offline": float(is_offline), } metrics, first_video = eval_policy( env, td_policy, num_episodes=cfg.eval_episodes, return_first_video=True, ) metrics.update(common_metrics) logger.log(metrics, category="eval") if cfg.wandb.enable: eval_video = logger._wandb.Video(first_video, fps=cfg.fps, format="mp4") logger._wandb.log({"eval_video": eval_video}, step=step) def train(cfg: dict, out_dir=None, job_name=None): if out_dir is None: raise NotImplementedError() if job_name is None: raise NotImplementedError() assert torch.cuda.is_available() torch.backends.cudnn.benchmark = True set_seed(cfg.seed) print(colored("Work dir:", "yellow", attrs=["bold"]), out_dir) print("make_env") env = make_env(cfg) print("make_policy") policy = make_policy(cfg) td_policy = TensorDictModule( policy, in_keys=["observation", "step_count"], out_keys=["action"], ) print("make_offline_buffer") offline_buffer = make_offline_buffer(cfg) # TODO(rcadene): move balanced_sampling, per_alpha, per_beta outside policy if cfg.policy.balanced_sampling: print("make online_buffer") num_traj_per_batch = cfg.policy.batch_size online_sampler = PrioritizedSliceSampler( max_capacity=100_000, alpha=cfg.policy.per_alpha, beta=cfg.policy.per_beta, num_slices=num_traj_per_batch, strict_length=True, ) online_buffer = TensorDictReplayBuffer( storage=LazyMemmapStorage(100_000), sampler=online_sampler, ) logger = Logger(out_dir, job_name, cfg) online_episode_idx = 0 start_time = time.time() step = 0 # number of policy update for offline_step in range(cfg.offline_steps): if offline_step == 0: print("Start offline training on a fixed dataset") # TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done? metrics = policy.update(offline_buffer, step) if step % cfg.log_freq == 0: log_training_metrics(logger, metrics, step, online_episode_idx, start_time, is_offline=False) if step > 0 and step % cfg.eval_freq == 0: eval_policy_and_log( env, td_policy, step, online_episode_idx, start_time, cfg, logger, is_offline=True, ) if step > 0 and cfg.save_model and step % cfg.save_freq == 0: print(f"Checkpoint model at step {step}") logger.save_model(policy, identifier=step) step += 1 demo_buffer = offline_buffer if cfg.policy.balanced_sampling else None for env_step in range(cfg.online_steps): if env_step == 0: print("Start online training by interacting with environment") # TODO: use SyncDataCollector for that? # TODO: add configurable number of rollout? (default=1) with torch.no_grad(): rollout = env.rollout( max_steps=cfg.env.episode_length, policy=td_policy, auto_cast_to_device=True, ) assert len(rollout) <= cfg.env.episode_length rollout["episode"] = torch.tensor([online_episode_idx] * len(rollout), dtype=torch.int) online_buffer.extend(rollout) ep_sum_reward = rollout["next", "reward"].sum() ep_max_reward = rollout["next", "reward"].max() ep_success = rollout["next", "success"].any() metrics = { "avg_sum_reward": np.nanmean(ep_sum_reward), "avg_max_reward": np.nanmean(ep_max_reward), "pc_success": np.nanmean(ep_success) * 100, } online_episode_idx += 1 for _ in range(cfg.policy.utd): train_metrics = policy.update( online_buffer, step, demo_buffer=demo_buffer, ) metrics.update(train_metrics) if step % cfg.log_freq == 0: log_training_metrics(logger, metrics, step, online_episode_idx, start_time, is_offline=False) if step > 0 and step % cfg.eval_freq == 0: eval_policy_and_log( env, td_policy, step, online_episode_idx, start_time, cfg, logger, is_offline=False, ) if step > 0 and cfg.save_model and step % cfg.save_freq == 0: print(f"Checkpoint model at step {step}") logger.save_model(policy, identifier=step) step += 1 if __name__ == "__main__": train_cli()