import time import hydra import numpy as np import torch from tensordict.nn import TensorDictModule from termcolor import colored from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer from torchrl.data.datasets.d4rl import D4RLExperienceReplay from torchrl.data.datasets.openx import OpenXExperienceReplay from torchrl.data.replay_buffers import PrioritizedSliceSampler from lerobot.common.datasets.factory import make_offline_buffer from lerobot.common.datasets.simxarm import SimxarmExperienceReplay from lerobot.common.envs.factory import make_env from lerobot.common.logger import Logger from lerobot.common.tdmpc import TDMPC from lerobot.common.utils import set_seed from lerobot.scripts.eval import eval_policy @hydra.main(version_base=None, config_name="default", config_path="../configs") def train(cfg: dict): assert torch.cuda.is_available() set_seed(cfg.seed) print(colored("Work dir:", "yellow", attrs=["bold"]), cfg.log_dir) env = make_env(cfg) policy = TDMPC(cfg) if cfg.pretrained_model_path: ckpt_path = ( "/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/offline.pt" ) if "offline" in cfg.pretrained_model_path: policy.step = 25000 elif "final" in cfg.pretrained_model_path: policy.step = 100000 else: raise NotImplementedError() policy.load(ckpt_path) td_policy = TensorDictModule( policy, in_keys=["observation", "step_count"], out_keys=["action"], ) # initialize offline dataset offline_buffer = make_offline_buffer(cfg) if cfg.balanced_sampling: online_sampler = PrioritizedSliceSampler( max_capacity=100_000, alpha=cfg.per_alpha, beta=cfg.per_beta, num_slices=num_traj_per_batch, strict_length=False, ) online_buffer = TensorDictReplayBuffer( storage=LazyMemmapStorage(100_000), sampler=online_sampler, ) L = Logger(cfg.log_dir, cfg) online_episode_idx = 0 start_time = time.time() step = 0 last_log_step = 0 last_save_step = 0 while step < cfg.train_steps: is_offline = True num_updates = cfg.episode_length _step = step + num_updates rollout_metrics = {} if step >= cfg.offline_steps: is_offline = False # TODO: use SyncDataCollector for that? with torch.no_grad(): rollout = env.rollout( max_steps=cfg.episode_length, policy=td_policy, auto_cast_to_device=True, ) assert len(rollout) <= cfg.episode_length rollout["episode"] = torch.tensor( [online_episode_idx] * len(rollout), dtype=torch.int ) online_buffer.extend(rollout) ep_reward = rollout["next", "reward"].sum() ep_success = rollout["next", "success"].any() online_episode_idx += 1 rollout_metrics = { "avg_reward": np.nanmean(ep_reward), "pc_success": np.nanmean(ep_success) * 100, } num_updates = len(rollout) * cfg.utd _step = min(step + len(rollout), cfg.train_steps) # Update model for i in range(num_updates): if is_offline: train_metrics = policy.update(offline_buffer, step + i) else: train_metrics = policy.update( online_buffer, step + i // cfg.utd, demo_buffer=offline_buffer if cfg.balanced_sampling else None, ) # Log training metrics env_step = int(_step * cfg.action_repeat) common_metrics = { "episode": online_episode_idx, "step": _step, "env_step": env_step, "total_time": time.time() - start_time, "is_offline": float(is_offline), } train_metrics.update(common_metrics) train_metrics.update(rollout_metrics) L.log(train_metrics, category="train") # Evaluate policy periodically if step == 0 or env_step - last_log_step >= cfg.eval_freq: eval_metrics = eval_policy( env, td_policy, num_episodes=cfg.eval_episodes, # TODO(rcadene): add step, env_step, L.video ) common_metrics.update(eval_metrics) L.log(common_metrics, category="eval") last_log_step = env_step - env_step % cfg.eval_freq # Save model periodically # if cfg.save_model and env_step - last_save_step >= cfg.save_freq: # L.save_model(policy, identifier=env_step) # print(f"Model has been checkpointed at step {env_step}") # last_save_step = env_step - env_step % cfg.save_freq # if cfg.save_model and is_offline and _step >= cfg.offline_steps: # # save the model after offline training # L.save_model(policy, identifier="offline") step = _step # dataset_d4rl = D4RLExperienceReplay( # dataset_id="maze2d-umaze-v1", # split_trajs=False, # batch_size=1, # sampler=SamplerWithoutReplacement(drop_last=False), # prefetch=4, # direct_download=True, # ) # dataset_openx = OpenXExperienceReplay( # "cmu_stretch", # batch_size=1, # num_slices=1, # #download="force", # streaming=False, # root="data", # ) if __name__ == "__main__": train()