import logging import os from pathlib import Path import torch from torchrl.data.replay_buffers import PrioritizedSliceSampler, SliceSampler from lerobot.common.envs.transforms import NormalizeTransform DATA_DIR = Path(os.environ.get("DATA_DIR", "data")) def make_offline_buffer( cfg, overwrite_sampler=None, normalize=True, overwrite_batch_size=None, overwrite_prefetch=None ): if cfg.policy.balanced_sampling: assert cfg.online_steps > 0 batch_size = None pin_memory = False prefetch = None else: assert cfg.online_steps == 0 num_slices = cfg.policy.batch_size batch_size = cfg.policy.horizon * num_slices pin_memory = cfg.device == "cuda" prefetch = cfg.prefetch if overwrite_batch_size is not None: batch_size = overwrite_batch_size if overwrite_prefetch is not None: prefetch = overwrite_prefetch if overwrite_sampler is None: # TODO(rcadene): move batch_size outside num_traj_per_batch = cfg.policy.batch_size # // cfg.horizon # TODO(rcadene): Sampler outputs a batch_size <= cfg.batch_size. # We would need to add a transform to pad the tensordict to ensure batch_size == cfg.batch_size. if cfg.offline_prioritized_sampler: logging.info("use prioritized sampler for offline dataset") sampler = PrioritizedSliceSampler( max_capacity=100_000, alpha=cfg.policy.per_alpha, beta=cfg.policy.per_beta, num_slices=num_traj_per_batch, strict_length=False, ) else: logging.info("use simple sampler for offline dataset") sampler = SliceSampler( num_slices=num_traj_per_batch, strict_length=False, ) else: sampler = overwrite_sampler if cfg.env.name == "simxarm": from lerobot.common.datasets.simxarm import SimxarmExperienceReplay clsfunc = SimxarmExperienceReplay dataset_id = f"xarm_{cfg.env.task}_medium" elif cfg.env.name == "pusht": from lerobot.common.datasets.pusht import PushtExperienceReplay clsfunc = PushtExperienceReplay dataset_id = "pusht" elif cfg.env.name == "aloha": from lerobot.common.datasets.aloha import AlohaExperienceReplay clsfunc = AlohaExperienceReplay dataset_id = f"aloha_{cfg.env.task}" else: raise ValueError(cfg.env.name) offline_buffer = clsfunc( dataset_id=dataset_id, root=DATA_DIR, sampler=sampler, batch_size=batch_size, pin_memory=pin_memory, prefetch=prefetch if isinstance(prefetch, int) else None, ) if normalize: # TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec stats = offline_buffer.compute_or_load_stats() in_keys = [("observation", "state"), ("action")] if cfg.policy == "tdmpc": for key in offline_buffer.image_keys: # TODO(rcadene): imagenet normalization is applied inside diffusion policy, but no normalization inside tdmpc in_keys.append(key) # since we use next observations in tdmpc in_keys.append(("next", *key)) in_keys.append(("next", "observation", "state")) if cfg.policy == "diffusion" and cfg.env.name == "pusht": # TODO(rcadene): we overwrite stats to have the same as pretrained model, but we should remove this stats["observation", "state", "min"] = torch.tensor([13.456424, 32.938293], dtype=torch.float32) stats["observation", "state", "max"] = torch.tensor([496.14618, 510.9579], dtype=torch.float32) stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32) stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32) transform = NormalizeTransform(stats, in_keys, mode="min_max") offline_buffer.set_transform(transform) if not overwrite_sampler: index = torch.arange(0, offline_buffer.num_samples, 1) sampler.extend(index) return offline_buffer