import importlib from collections import deque from typing import Optional import einops import torch from tensordict import TensorDict from torchrl.data.tensor_specs import ( BoundedTensorSpec, CompositeSpec, DiscreteTensorSpec, UnboundedContinuousTensorSpec, ) from torchrl.envs import EnvBase from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform from lerobot.common.utils import set_seed _has_gym = importlib.util.find_spec("gym") is not None _has_diffpolicy = importlib.util.find_spec("diffusion_policy") is not None and _has_gym class PushtEnv(EnvBase): def __init__( self, frame_skip: int = 1, from_pixels: bool = False, pixels_only: bool = False, image_size=None, seed=1337, device="cpu", num_prev_obs=0, num_prev_action=0, ): super().__init__(device=device, batch_size=[]) self.frame_skip = frame_skip self.from_pixels = from_pixels self.pixels_only = pixels_only self.image_size = image_size self.num_prev_obs = num_prev_obs self.num_prev_action = num_prev_action if pixels_only: assert from_pixels if from_pixels: assert image_size if not _has_diffpolicy: raise ImportError("Cannot import diffusion_policy.") if not _has_gym: raise ImportError("Cannot import gym.") # TODO(rcadene) (PushTEnv is similar to PushTImageEnv, but without the image rendering, it's faster to iterate on) # from diffusion_policy.env.pusht.pusht_env import PushTEnv if not from_pixels: raise NotImplementedError("Use PushTEnv, instead of PushTImageEnv") from diffusion_policy.env.pusht.pusht_image_env import PushTImageEnv self._env = PushTImageEnv(render_size=self.image_size) self._make_spec() self._current_seed = self.set_seed(seed) if self.num_prev_obs > 0: self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs) self._prev_obs_state_queue = deque(maxlen=self.num_prev_obs) if self.num_prev_action > 0: raise NotImplementedError() # self._prev_action_queue = deque(maxlen=self.num_prev_action) def render(self, mode="rgb_array", width=384, height=384): if width != height: raise NotImplementedError() tmp = self._env.render_size self._env.render_size = width out = self._env.render(mode) self._env.render_size = tmp return out def _format_raw_obs(self, raw_obs): if self.from_pixels: image = torch.from_numpy(raw_obs["image"]) obs = {"image": image} if not self.pixels_only: obs["state"] = torch.from_numpy(raw_obs["agent_pos"]).type(torch.float32) else: # TODO: obs = {"state": torch.from_numpy(raw_obs["observation"]).type(torch.float32)} return obs def _reset(self, tensordict: Optional[TensorDict] = None): td = tensordict if td is None or td.is_empty(): # we need to handle seed iteration, since self._env.reset() rely an internal _seed. self._current_seed += 1 self.set_seed(self._current_seed) raw_obs = self._env.reset() assert self._current_seed == self._env._seed obs = self._format_raw_obs(raw_obs) if self.num_prev_obs > 0: stacked_obs = {} if "image" in obs: self._prev_obs_image_queue = deque( [obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1) ) stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue)) if "state" in obs: self._prev_obs_state_queue = deque( [obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1) ) stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue)) obs = stacked_obs td = TensorDict( { "observation": TensorDict(obs, batch_size=[]), "done": torch.tensor([False], dtype=torch.bool), }, batch_size=[], ) else: raise NotImplementedError() return td def _step(self, tensordict: TensorDict): td = tensordict action = td["action"].numpy() # step expects shape=(4,) so we pad if necessary # TODO(rcadene): add info["is_success"] and info["success"] ? sum_reward = 0 if action.ndim == 1: action = einops.repeat(action, "c -> t c", t=self.frame_skip) else: if self.frame_skip > 1: raise NotImplementedError() num_action_steps = action.shape[0] for i in range(num_action_steps): raw_obs, reward, done, info = self._env.step(action[i]) sum_reward += reward obs = self._format_raw_obs(raw_obs) if self.num_prev_obs > 0: stacked_obs = {} if "image" in obs: self._prev_obs_image_queue.append(obs["image"]) stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue)) if "state" in obs: self._prev_obs_state_queue.append(obs["state"]) stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue)) obs = stacked_obs td = TensorDict( { "observation": TensorDict(obs, batch_size=[]), "reward": torch.tensor([sum_reward], dtype=torch.float32), # succes and done are true when coverage > self.success_threshold in env "done": torch.tensor([done], dtype=torch.bool), "success": torch.tensor([done], dtype=torch.bool), }, batch_size=[], ) return td def _make_spec(self): obs = {} if self.from_pixels: image_shape = (3, self.image_size, self.image_size) if self.num_prev_obs > 0: image_shape = (self.num_prev_obs + 1, *image_shape) obs["image"] = BoundedTensorSpec( low=0, high=1, shape=image_shape, dtype=torch.float32, device=self.device, ) if not self.pixels_only: state_shape = self._env.observation_space["agent_pos"].shape if self.num_prev_obs > 0: state_shape = (self.num_prev_obs + 1, *state_shape) obs["state"] = BoundedTensorSpec( low=0, high=512, shape=state_shape, dtype=torch.float32, device=self.device, ) else: # TODO(rcadene): add observation_space achieved_goal and desired_goal? state_shape = self._env.observation_space["observation"].shape if self.num_prev_obs > 0: state_shape = (self.num_prev_obs + 1, *state_shape) obs["state"] = UnboundedContinuousTensorSpec( # TODO: shape=state_shape, dtype=torch.float32, device=self.device, ) self.observation_spec = CompositeSpec({"observation": obs}) self.action_spec = _gym_to_torchrl_spec_transform( self._env.action_space, device=self.device, ) self.reward_spec = UnboundedContinuousTensorSpec( shape=(1,), dtype=torch.float32, device=self.device, ) self.done_spec = CompositeSpec( { "done": DiscreteTensorSpec( 2, shape=(1,), dtype=torch.bool, device=self.device, ), "success": DiscreteTensorSpec( 2, shape=(1,), dtype=torch.bool, device=self.device, ), } ) def _set_seed(self, seed: Optional[int]): set_seed(seed) self._env.seed(seed)