import logging from pathlib import Path import hydra import numpy as np import torch from lerobot.common.datasets.factory import make_dataset from lerobot.common.datasets.utils import cycle from lerobot.common.envs.factory import make_env from lerobot.common.logger import Logger, log_output_dir from lerobot.common.policies.factory import make_policy from lerobot.common.utils import ( format_big_number, get_safe_torch_device, init_logging, set_global_seed, ) from lerobot.scripts.eval import eval_policy @hydra.main(version_base=None, config_name="default", config_path="../configs") def train_cli(cfg: dict): train( cfg, out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir, job_name=hydra.core.hydra_config.HydraConfig.get().job.name, ) def train_notebook(out_dir=None, job_name=None, config_name="default", config_path="../configs"): from hydra import compose, initialize hydra.core.global_hydra.GlobalHydra.instance().clear() initialize(config_path=config_path) cfg = compose(config_name=config_name) train(cfg, out_dir=out_dir, job_name=job_name) def log_train_info(logger, info, step, cfg, dataset, is_offline): loss = info["loss"] grad_norm = info["grad_norm"] lr = info["lr"] update_s = info["update_s"] # A sample is an (observation,action) pair, where observation and action # can be on multiple timestamps. In a batch, we have `batch_size`` number of samples. num_samples = (step + 1) * cfg.policy.batch_size avg_samples_per_ep = dataset.num_samples / dataset.num_episodes num_episodes = num_samples / avg_samples_per_ep num_epochs = num_samples / dataset.num_samples log_items = [ f"step:{format_big_number(step)}", # number of samples seen during training f"smpl:{format_big_number(num_samples)}", # number of episodes seen during training f"ep:{format_big_number(num_episodes)}", # number of time all unique samples are seen f"epch:{num_epochs:.2f}", f"loss:{loss:.3f}", f"grdn:{grad_norm:.3f}", f"lr:{lr:0.1e}", # in seconds f"updt_s:{update_s:.3f}", ] logging.info(" ".join(log_items)) info["step"] = step info["num_samples"] = num_samples info["num_episodes"] = num_episodes info["num_epochs"] = num_epochs info["is_offline"] = is_offline logger.log_dict(info, step, mode="train") def log_eval_info(logger, info, step, cfg, dataset, is_offline): eval_s = info["eval_s"] avg_sum_reward = info["avg_sum_reward"] pc_success = info["pc_success"] # A sample is an (observation,action) pair, where observation and action # can be on multiple timestamps. In a batch, we have `batch_size`` number of samples. num_samples = (step + 1) * cfg.policy.batch_size avg_samples_per_ep = dataset.num_samples / dataset.num_episodes num_episodes = num_samples / avg_samples_per_ep num_epochs = num_samples / dataset.num_samples log_items = [ f"step:{format_big_number(step)}", # number of samples seen during training f"smpl:{format_big_number(num_samples)}", # number of episodes seen during training f"ep:{format_big_number(num_episodes)}", # number of time all unique samples are seen f"epch:{num_epochs:.2f}", f"∑rwrd:{avg_sum_reward:.3f}", f"success:{pc_success:.1f}%", f"eval_s:{eval_s:.3f}", ] logging.info(" ".join(log_items)) info["step"] = step info["num_samples"] = num_samples info["num_episodes"] = num_episodes info["num_epochs"] = num_epochs info["is_offline"] = is_offline logger.log_dict(info, step, mode="eval") def train(cfg: dict, out_dir=None, job_name=None): if out_dir is None: raise NotImplementedError() if job_name is None: raise NotImplementedError() if cfg.online_steps > 0: assert cfg.rollout_batch_size == 1, "rollout_batch_size > 1 not supported for online training steps" init_logging() # Check device is available get_safe_torch_device(cfg.device, log=True) torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True set_global_seed(cfg.seed) logging.info("make_dataset") dataset = make_dataset(cfg) # TODO(rcadene): move balanced_sampling, per_alpha, per_beta outside policy # if cfg.policy.balanced_sampling: # logging.info("make online_buffer") # num_traj_per_batch = cfg.policy.batch_size # online_sampler = PrioritizedSliceSampler( # max_capacity=100_000, # alpha=cfg.policy.per_alpha, # beta=cfg.policy.per_beta, # num_slices=num_traj_per_batch, # strict_length=True, # ) # online_buffer = TensorDictReplayBuffer( # storage=LazyMemmapStorage(100_000), # sampler=online_sampler, # transform=dataset.transform, # ) logging.info("make_env") env = make_env(cfg, num_parallel_envs=cfg.eval_episodes) logging.info("make_policy") policy = make_policy(cfg) num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad) num_total_params = sum(p.numel() for p in policy.parameters()) # log metrics to terminal and wandb logger = Logger(out_dir, job_name, cfg) log_output_dir(out_dir) logging.info(f"{cfg.env.task=}") logging.info(f"{cfg.offline_steps=} ({format_big_number(cfg.offline_steps)})") logging.info(f"{cfg.online_steps=}") logging.info(f"{cfg.env.action_repeat=}") logging.info(f"{dataset.num_samples=} ({format_big_number(dataset.num_samples)})") logging.info(f"{dataset.num_episodes=}") logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})") logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})") # Note: this helper will be used in offline and online training loops. def _maybe_eval_and_maybe_save(step): if step % cfg.eval_freq == 0: logging.info(f"Eval policy at step {step}") eval_info, first_video = eval_policy( env, policy, return_first_video=True, video_dir=Path(out_dir) / "eval", save_video=True, transform=dataset.transform, seed=cfg.seed, ) log_eval_info(logger, eval_info["aggregated"], step, cfg, dataset, is_offline) if cfg.wandb.enable: logger.log_video(first_video, step, mode="eval") logging.info("Resume training") if cfg.save_model and step % cfg.save_freq == 0: logging.info(f"Checkpoint policy after step {step}") logger.save_model(policy, identifier=step) logging.info("Resume training") step = 0 # number of policy update (forward + backward + optim) is_offline = True dataloader = torch.utils.data.DataLoader( dataset, num_workers=4, batch_size=cfg.policy.batch_size, shuffle=True, pin_memory=cfg.device != "cpu", drop_last=True, ) dl_iter = cycle(dataloader) for offline_step in range(cfg.offline_steps): if offline_step == 0: logging.info("Start offline training on a fixed dataset") policy.train() batch = next(dl_iter) for key in batch: batch[key] = batch[key].to(cfg.device, non_blocking=True) train_info = policy(batch, step) # TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done? if step % cfg.log_freq == 0: log_train_info(logger, train_info, step, cfg, dataset, is_offline) # Note: _maybe_eval_and_maybe_save happens **after** the `step`th training update has completed, so we pass in # step + 1. _maybe_eval_and_maybe_save(step + 1) step += 1 raise NotImplementedError() demo_buffer = dataset if cfg.policy.balanced_sampling else None online_step = 0 is_offline = False for env_step in range(cfg.online_steps): if env_step == 0: logging.info("Start online training by interacting with environment") # TODO: add configurable number of rollout? (default=1) with torch.no_grad(): rollout = env.rollout( max_steps=cfg.env.episode_length, policy=policy, auto_cast_to_device=True, ) assert ( len(rollout.batch_size) == 2 ), "2 dimensions expected: number of env in parallel x max number of steps during rollout" num_parallel_env = rollout.batch_size[0] if num_parallel_env != 1: # TODO(rcadene): when num_parallel_env > 1, rollout["episode"] needs to be properly set and we need to add tests raise NotImplementedError() num_max_steps = rollout.batch_size[1] assert num_max_steps <= cfg.env.episode_length # reshape to have a list of steps to insert into online_buffer rollout = rollout.reshape(num_parallel_env * num_max_steps) # set same episode index for all time steps contained in this rollout rollout["episode"] = torch.tensor([env_step] * len(rollout), dtype=torch.int) # online_buffer.extend(rollout) ep_sum_reward = rollout["next", "reward"].sum() ep_max_reward = rollout["next", "reward"].max() ep_success = rollout["next", "success"].any() rollout_info = { "avg_sum_reward": np.nanmean(ep_sum_reward), "avg_max_reward": np.nanmean(ep_max_reward), "pc_success": np.nanmean(ep_success) * 100, "env_step": env_step, "ep_length": len(rollout), } for _ in range(cfg.policy.utd): train_info = policy.update( # online_buffer, step, demo_buffer=demo_buffer, ) if step % cfg.log_freq == 0: train_info.update(rollout_info) log_train_info(logger, train_info, step, cfg, dataset, is_offline) # Note: _maybe_eval_and_maybe_save happens **after** the `step`th training update has completed, so we pass # in step + 1. _maybe_eval_and_maybe_save(step + 1) step += 1 online_step += 1 logging.info("End of training") if __name__ == "__main__": train_cli()