# @package _global_ shape_meta: # acceptable types: rgb, low_dim obs: image: shape: [3, 96, 96] type: rgb agent_pos: shape: [2] type: low_dim action: shape: [2] seed: 100000 horizon: 16 n_obs_steps: 2 n_action_steps: 8 n_latency_steps: 0 dataset_obs_steps: ${n_obs_steps} past_action_visible: False keypoint_visible_rate: 1.0 obs_as_global_cond: True eval_episodes: 50 eval_freq: 5000 save_freq: 5000 log_freq: 250 offline_steps: 200000 online_steps: 0 offline_prioritized_sampler: true policy: name: diffusion shape_meta: ${shape_meta} horizon: ${horizon} # n_action_steps: ${eval:'${n_action_steps}+${n_latency_steps}'} n_obs_steps: ${n_obs_steps} num_inference_steps: 100 obs_as_global_cond: ${obs_as_global_cond} # crop_shape: null diffusion_step_embed_dim: 128 down_dims: [512, 1024, 2048] kernel_size: 5 n_groups: 8 cond_predict_scale: True pretrained_model_path: batch_size: 64 per_alpha: 0.6 per_beta: 0.4 balanced_sampling: false utd: 1 offline_steps: ${offline_steps} use_ema: true lr_scheduler: cosine lr_warmup_steps: 500 grad_clip_norm: 10 noise_scheduler: _target_: diffusers.schedulers.scheduling_ddpm.DDPMScheduler num_train_timesteps: 100 beta_start: 0.0001 beta_end: 0.02 beta_schedule: squaredcos_cap_v2 variance_type: fixed_small # Yilun's paper uses fixed_small_log instead, but easy to cause Nan clip_sample: True # required when predict_epsilon=False prediction_type: epsilon # or sample obs_encoder: shape_meta: ${shape_meta} # resize_shape: null crop_shape: [84, 84] # constant center crop random_crop: True use_group_norm: True share_rgb_model: False norm_mean_std: [0.5, 0.5] # for PushT the original impl normalizes to [-1, 1] (maybe not the case for robomimic envs) rgb_model: pretrained: false num_keypoints: 32 relu: true ema: _target_: lerobot.common.policies.diffusion.model.ema_model.EMAModel update_after_step: 0 inv_gamma: 1.0 power: 0.75 min_value: 0.0 max_value: 0.9999 optimizer: _target_: torch.optim.AdamW lr: 1.0e-4 betas: [0.95, 0.999] eps: 1.0e-8 weight_decay: 1.0e-6