import logging import threading import time from pathlib import Path import hydra import imageio import numpy as np import torch import tqdm from tensordict.nn import TensorDictModule from termcolor import colored from torchrl.envs import EnvBase from lerobot.common.datasets.factory import make_offline_buffer from lerobot.common.envs.factory import make_env from lerobot.common.policies.factory import make_policy from lerobot.common.utils import set_seed def write_video(video_path, stacked_frames, fps): imageio.mimsave(video_path, stacked_frames, fps=fps) def eval_policy( env: EnvBase, policy: TensorDictModule = None, num_episodes: int = 10, max_steps: int = 30, save_video: bool = False, video_dir: Path = None, fps: int = 15, return_first_video: bool = False, ): start = time.time() sum_rewards = [] max_rewards = [] successes = [] threads = [] for i in tqdm.tqdm(range(num_episodes)): tensordict = env.reset() ep_frames = [] if save_video or (return_first_video and i == 0): def rendering_callback(env, td=None): ep_frames.append(env.render()) # noqa: B023 # render first frame before rollout rendering_callback(env) else: rendering_callback = None with torch.inference_mode(): rollout = env.rollout( max_steps=max_steps, policy=policy, callback=rendering_callback, auto_reset=False, tensordict=tensordict, auto_cast_to_device=True, ) # print(", ".join([f"{x:.3f}" for x in rollout["next", "reward"][:,0].tolist()])) ep_sum_reward = rollout["next", "reward"].sum() ep_max_reward = rollout["next", "reward"].max() ep_success = rollout["next", "success"].any() sum_rewards.append(ep_sum_reward.item()) max_rewards.append(ep_max_reward.item()) successes.append(ep_success.item()) if save_video or (return_first_video and i == 0): stacked_frames = np.stack(ep_frames) if save_video: video_dir.mkdir(parents=True, exist_ok=True) video_path = video_dir / f"eval_episode_{i}.mp4" thread = threading.Thread( target=write_video, args=(str(video_path), stacked_frames, fps), ) thread.start() threads.append(thread) if return_first_video and i == 0: first_video = stacked_frames.transpose(0, 3, 1, 2) for thread in threads: thread.join() info = { "avg_sum_reward": np.nanmean(sum_rewards), "avg_max_reward": np.nanmean(max_rewards), "pc_success": np.nanmean(successes) * 100, "eval_s": time.time() - start, "eval_ep_s": (time.time() - start) / num_episodes, } if return_first_video: return info, first_video return info @hydra.main(version_base=None, config_name="default", config_path="../configs") def eval_cli(cfg: dict): eval(cfg, out_dir=hydra.core.hydra_config.HydraConfig.get().runtime.output_dir) def eval(cfg: dict, out_dir=None): if out_dir is None: raise NotImplementedError() assert torch.cuda.is_available() torch.backends.cudnn.benchmark = True set_seed(cfg.seed) print(colored("Log dir:", "yellow", attrs=["bold"]), out_dir) logging.info("make_offline_buffer") offline_buffer = make_offline_buffer(cfg) logging.info("make_env") env = make_env(cfg, transform=offline_buffer.transform) if cfg.policy.pretrained_model_path: policy = make_policy(cfg) policy = TensorDictModule( policy, in_keys=["observation", "step_count"], out_keys=["action"], ) else: # when policy is None, rollout a random policy policy = None metrics = eval_policy( env, policy=policy, save_video=True, video_dir=Path(out_dir) / "eval", fps=cfg.env.fps, max_steps=cfg.env.episode_length, num_episodes=cfg.eval_episodes, ) print(metrics) if __name__ == "__main__": eval_cli()