Files
lerobot_piper/lerobot/common/datasets/pusht.py
Cadene 1cdfbc8b52 WIP
WIP

WIP train.py works, loss going down

WIP eval.py

Fix

WIP (eval running, TODO: verify results reproduced)

Eval works! (testing reproducibility)

WIP

pretrained model pusht reproduces same results as torchrl

pretrained model pusht reproduces same results as torchrl

Remove AbstractPolicy, Move all queues in select_action

WIP test_datasets passed (TODO: re-enable NormalizeTransform)
2024-04-04 15:31:03 +00:00

279 lines
9.6 KiB
Python

from pathlib import Path
import einops
import numpy as np
import pygame
import pymunk
import torch
import tqdm
from lerobot.common.datasets.utils import download_and_extract_zip, load_data_with_delta_timestamps
from lerobot.common.envs.pusht.pusht_env import pymunk_to_shapely
from lerobot.common.policies.diffusion.replay_buffer import ReplayBuffer as DiffusionPolicyReplayBuffer
# as define in env
SUCCESS_THRESHOLD = 0.95 # 95% coverage,
PUSHT_URL = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
PUSHT_ZARR = Path("pusht/pusht_cchi_v7_replay.zarr")
def get_goal_pose_body(pose):
mass = 1
inertia = pymunk.moment_for_box(mass, (50, 100))
body = pymunk.Body(mass, inertia)
# preserving the legacy assignment order for compatibility
# the order here doesn't matter somehow, maybe because CoM is aligned with body origin
body.position = pose[:2].tolist()
body.angle = pose[2]
return body
def add_segment(space, a, b, radius):
shape = pymunk.Segment(space.static_body, a, b, radius)
shape.color = pygame.Color("LightGray") # https://htmlcolorcodes.com/color-names
return shape
def add_tee(
space,
position,
angle,
scale=30,
color="LightSlateGray",
mask=None,
):
if mask is None:
mask = pymunk.ShapeFilter.ALL_MASKS()
mass = 1
length = 4
vertices1 = [
(-length * scale / 2, scale),
(length * scale / 2, scale),
(length * scale / 2, 0),
(-length * scale / 2, 0),
]
inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
vertices2 = [
(-scale / 2, scale),
(-scale / 2, length * scale),
(scale / 2, length * scale),
(scale / 2, scale),
]
inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
body = pymunk.Body(mass, inertia1 + inertia2)
shape1 = pymunk.Poly(body, vertices1)
shape2 = pymunk.Poly(body, vertices2)
shape1.color = pygame.Color(color)
shape2.color = pygame.Color(color)
shape1.filter = pymunk.ShapeFilter(mask=mask)
shape2.filter = pymunk.ShapeFilter(mask=mask)
body.center_of_gravity = (shape1.center_of_gravity + shape2.center_of_gravity) / 2
body.position = position
body.angle = angle
body.friction = 1
space.add(body, shape1, shape2)
return body
class PushtDataset(torch.utils.data.Dataset):
"""
Arguments
----------
delta_timestamps : dict[list[float]] | None, optional
Loads data from frames with a shift in timestamps with a different strategy for each data key (e.g. state, action or image)
If `None`, no shift is applied to current timestamp and the data from the current frame is loaded.
"""
available_datasets = ["pusht"]
fps = 10
image_keys = ["observation.image"]
def __init__(
self,
dataset_id: str,
version: str | None = "v1.2",
root: Path | None = None,
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
):
super().__init__()
self.dataset_id = dataset_id
self.version = version
self.root = root
self.transform = transform
self.delta_timestamps = delta_timestamps
data_dir = self.root / f"{self.dataset_id}"
if (data_dir / "data_dict.pth").exists() and (data_dir / "data_ids_per_episode.pth").exists():
self.data_dict = torch.load(data_dir / "data_dict.pth")
self.data_ids_per_episode = torch.load(data_dir / "data_ids_per_episode.pth")
else:
self._download_and_preproc_obsolete()
data_dir.mkdir(parents=True, exist_ok=True)
torch.save(self.data_dict, data_dir / "data_dict.pth")
torch.save(self.data_ids_per_episode, data_dir / "data_ids_per_episode.pth")
@property
def num_samples(self) -> int:
return len(self.data_dict["index"])
@property
def num_episodes(self) -> int:
return len(self.data_ids_per_episode)
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
item = {}
# get episode id and timestamp of the sampled frame
current_ts = self.data_dict["timestamp"][idx].item()
episode = self.data_dict["episode"][idx].item()
for key in self.data_dict:
if self.delta_timestamps is not None and key in self.delta_timestamps:
data, is_pad = load_data_with_delta_timestamps(
self.data_dict,
self.data_ids_per_episode,
self.delta_timestamps,
key,
current_ts,
episode,
)
item[key] = data
item[f"{key}_is_pad"] = is_pad
else:
item[key] = self.data_dict[key][idx]
if self.transform is not None:
item = self.transform(item)
return item
def _download_and_preproc_obsolete(self):
assert self.root is not None
raw_dir = self.root / f"{self.dataset_id}_raw"
zarr_path = (raw_dir / PUSHT_ZARR).resolve()
if not zarr_path.is_dir():
raw_dir.mkdir(parents=True, exist_ok=True)
download_and_extract_zip(PUSHT_URL, raw_dir)
# load
dataset_dict = DiffusionPolicyReplayBuffer.copy_from_path(
zarr_path
) # , keys=['img', 'state', 'action'])
episode_ids = torch.from_numpy(dataset_dict.get_episode_idxs())
num_episodes = dataset_dict.meta["episode_ends"].shape[0]
total_frames = dataset_dict["action"].shape[0]
# to create test artifact
# num_episodes = 1
# total_frames = 50
assert len(
{dataset_dict[key].shape[0] for key in dataset_dict.keys()} # noqa: SIM118
), "Some data type dont have the same number of total frames."
# TODO: verify that goal pose is expected to be fixed
goal_pos_angle = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
goal_body = get_goal_pose_body(goal_pos_angle)
imgs = torch.from_numpy(dataset_dict["img"])
imgs = einops.rearrange(imgs, "b h w c -> b c h w")
states = torch.from_numpy(dataset_dict["state"])
actions = torch.from_numpy(dataset_dict["action"])
self.data_ids_per_episode = {}
ep_dicts = []
idx0 = 0
for episode_id in tqdm.tqdm(range(num_episodes)):
idx1 = dataset_dict.meta["episode_ends"][episode_id]
# to create test artifact
# idx1 = 51
num_frames = idx1 - idx0
assert (episode_ids[idx0:idx1] == episode_id).all()
image = imgs[idx0:idx1]
state = states[idx0:idx1]
agent_pos = state[:, :2]
block_pos = state[:, 2:4]
block_angle = state[:, 4]
reward = torch.zeros(num_frames, 1)
success = torch.zeros(num_frames, 1, dtype=torch.bool)
done = torch.zeros(num_frames, 1, dtype=torch.bool)
for i in range(num_frames):
space = pymunk.Space()
space.gravity = 0, 0
space.damping = 0
# Add walls.
walls = [
add_segment(space, (5, 506), (5, 5), 2),
add_segment(space, (5, 5), (506, 5), 2),
add_segment(space, (506, 5), (506, 506), 2),
add_segment(space, (5, 506), (506, 506), 2),
]
space.add(*walls)
block_body = add_tee(space, block_pos[i].tolist(), block_angle[i].item())
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage = intersection_area / goal_area
reward[i] = np.clip(coverage / SUCCESS_THRESHOLD, 0, 1)
success[i] = coverage > SUCCESS_THRESHOLD
# last step of demonstration is considered done
done[-1] = True
ep_dict = {
"observation.image": image,
"observation.state": agent_pos,
"action": actions[idx0:idx1],
"episode": torch.tensor([episode_id] * num_frames, dtype=torch.int),
"frame_id": torch.arange(0, num_frames, 1),
"timestamp": torch.arange(0, num_frames, 1) / self.fps,
# "next.observation.image": image[1:],
# "next.observation.state": agent_pos[1:],
# TODO(rcadene): verify that reward and done are aligned with image and agent_pos
"next.reward": torch.cat([reward[1:], reward[[-1]]]),
"next.done": torch.cat([done[1:], done[[-1]]]),
"next.success": torch.cat([success[1:], success[[-1]]]),
}
ep_dicts.append(ep_dict)
assert isinstance(episode_id, int)
self.data_ids_per_episode[episode_id] = torch.arange(idx0, idx1, 1)
assert len(self.data_ids_per_episode[episode_id]) == num_frames
idx0 = idx1
self.data_dict = {}
keys = ep_dicts[0].keys()
for key in keys:
self.data_dict[key] = torch.cat([x[key] for x in ep_dicts])
self.data_dict["index"] = torch.arange(0, total_frames, 1)
if __name__ == "__main__":
dataset = PushtDataset(
"pusht",
root=Path("data"),
delta_timestamps={
"observation.image": [0, -1, -0.2, -0.1],
"observation.state": [0, -1, -0.2, -0.1],
"action": [-0.1, 0, 1, 2, 3],
},
)
dataset[10]