Files
lerobot_piper/lerobot/scripts/train.py

208 lines
6.4 KiB
Python

import time
import hydra
import numpy as np
import torch
from tensordict.nn import TensorDictModule
from termcolor import colored
from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
from torchrl.data.datasets.d4rl import D4RLExperienceReplay
from torchrl.data.datasets.openx import OpenXExperienceReplay
from torchrl.data.replay_buffers import PrioritizedSliceSampler
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.envs.factory import make_env
from lerobot.common.logger import Logger
from lerobot.common.policies.factory import make_policy
from lerobot.common.utils import set_seed
from lerobot.scripts.eval import eval_policy
@hydra.main(version_base=None, config_name="default", config_path="../configs")
def train_cli(cfg: dict):
train(
cfg,
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
)
def train_notebook(
out_dir=None, job_name=None, config_name="default", config_path="../configs"
):
from hydra import compose, initialize
hydra.core.global_hydra.GlobalHydra.instance().clear()
initialize(config_path=config_path)
cfg = compose(config_name=config_name)
train(cfg, out_dir=out_dir, job_name=job_name)
def log_training_metrics(L, metrics, step, online_episode_idx, start_time, is_offline):
common_metrics = {
"episode": online_episode_idx,
"step": step,
"total_time": time.time() - start_time,
"is_offline": float(is_offline),
}
metrics.update(common_metrics)
L.log(metrics, category="train")
def eval_policy_and_log(
env, td_policy, step, online_episode_idx, start_time, is_offline, cfg, L
):
common_metrics = {
"episode": online_episode_idx,
"step": step,
"total_time": time.time() - start_time,
"is_offline": float(is_offline),
}
metrics, first_video = eval_policy(
env,
td_policy,
num_episodes=cfg.eval_episodes,
return_first_video=True,
)
metrics.update(common_metrics)
L.log(metrics, category="eval")
if cfg.wandb.enable:
eval_video = L._wandb.Video(first_video, fps=cfg.fps, format="mp4")
L._wandb.log({"eval_video": eval_video}, step=step)
def train(cfg: dict, out_dir=None, job_name=None):
if out_dir is None:
raise NotImplementedError()
if job_name is None:
raise NotImplementedError()
assert torch.cuda.is_available()
torch.backends.cudnn.benchmark = True
set_seed(cfg.seed)
print(colored("Work dir:", "yellow", attrs=["bold"]), out_dir)
env = make_env(cfg)
policy = make_policy(cfg)
td_policy = TensorDictModule(
policy,
in_keys=["observation", "step_count"],
out_keys=["action"],
)
# initialize offline dataset
offline_buffer = make_offline_buffer(cfg)
# TODO(rcadene): move balanced_sampling, per_alpha, per_beta outside policy
if cfg.policy.balanced_sampling:
num_traj_per_batch = cfg.policy.batch_size
online_sampler = PrioritizedSliceSampler(
max_capacity=100_000,
alpha=cfg.policy.per_alpha,
beta=cfg.policy.per_beta,
num_slices=num_traj_per_batch,
strict_length=True,
)
online_buffer = TensorDictReplayBuffer(
storage=LazyMemmapStorage(100_000),
sampler=online_sampler,
)
L = Logger(out_dir, job_name, cfg)
online_episode_idx = 0
start_time = time.time()
step = 0
# First eval with a random model or pretrained
eval_policy_and_log(
env, td_policy, step, online_episode_idx, start_time, is_offline, cfg, L
)
# Train offline
for _ in range(cfg.offline_steps):
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
metrics = policy.update(offline_buffer, step)
if step % cfg.log_freq == 0:
log_training_metrics(
L, metrics, step, online_episode_idx, start_time, is_offline=False
)
if step > 0 and step % cfg.eval_freq == 0:
eval_policy_and_log(
env, td_policy, step, online_episode_idx, start_time, is_offline, cfg, L
)
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
print(f"Checkpoint model at step {step}")
L.save_model(policy, identifier=step)
step += 1
# Train online
demo_buffer = offline_buffer if cfg.policy.balanced_sampling else None
for _ in range(cfg.online_steps):
# TODO: use SyncDataCollector for that?
with torch.no_grad():
rollout = env.rollout(
max_steps=cfg.env.episode_length,
policy=td_policy,
auto_cast_to_device=True,
)
assert len(rollout) <= cfg.env.episode_length
rollout["episode"] = torch.tensor(
[online_episode_idx] * len(rollout), dtype=torch.int
)
online_buffer.extend(rollout)
ep_sum_reward = rollout["next", "reward"].sum()
ep_max_reward = rollout["next", "reward"].max()
ep_success = rollout["next", "success"].any()
metrics = {
"avg_sum_reward": np.nanmean(ep_sum_reward),
"avg_max_reward": np.nanmean(ep_max_reward),
"pc_success": np.nanmean(ep_success) * 100,
}
online_episode_idx += 1
for _ in range(cfg.policy.utd):
train_metrics = policy.update(
online_buffer,
step,
demo_buffer=demo_buffer,
)
metrics.update(train_metrics)
if step % cfg.log_freq == 0:
log_training_metrics(
L, metrics, step, online_episode_idx, start_time, is_offline=False
)
if step > 0 and step & cfg.eval_freq == 0:
eval_policy_and_log(
env,
td_policy,
step,
online_episode_idx,
start_time,
is_offline,
cfg,
L,
)
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
print(f"Checkpoint model at step {step}")
L.save_model(policy, identifier=step)
step += 1
if __name__ == "__main__":
train_cli()