Files
lerobot_piper/lerobot/common/datasets/lerobot_dataset.py
Simon Alibert f5e76393eb Release cleanup (#132)
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: Cadene <re.cadene@gmail.com>
2024-05-06 03:03:14 +02:00

180 lines
5.8 KiB
Python

import os
from pathlib import Path
import datasets
import torch
from lerobot.common.datasets.utils import (
load_episode_data_index,
load_hf_dataset,
load_info,
load_previous_and_future_frames,
load_stats,
load_videos,
)
from lerobot.common.datasets.video_utils import VideoFrame, load_from_videos
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
CODEBASE_VERSION = "v1.3"
class LeRobotDataset(torch.utils.data.Dataset):
def __init__(
self,
repo_id: str,
version: str | None = CODEBASE_VERSION,
root: Path | None = DATA_DIR,
split: str = "train",
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
):
super().__init__()
self.repo_id = repo_id
self.version = version
self.root = root
self.split = split
self.transform = transform
self.delta_timestamps = delta_timestamps
# load data from hub or locally when root is provided
# TODO(rcadene, aliberts): implement faster transfer
# https://huggingface.co/docs/huggingface_hub/en/guides/download#faster-downloads
self.hf_dataset = load_hf_dataset(repo_id, version, root, split)
self.episode_data_index = load_episode_data_index(repo_id, version, root)
self.stats = load_stats(repo_id, version, root)
self.info = load_info(repo_id, version, root)
if self.video:
self.videos_dir = load_videos(repo_id, version, root)
@property
def fps(self) -> int:
"""Frames per second used during data collection."""
return self.info["fps"]
@property
def video(self) -> bool:
"""Returns True if this dataset loads video frames from mp4 files.
Returns False if it only loads images from png files.
"""
return self.info.get("video", False)
@property
def features(self) -> datasets.Features:
return self.hf_dataset.features
@property
def camera_keys(self) -> list[str]:
"""Keys to access image and video stream from cameras."""
keys = []
for key, feats in self.hf_dataset.features.items():
if isinstance(feats, (datasets.Image, VideoFrame)):
keys.append(key)
return keys
@property
def video_frame_keys(self) -> list[str]:
"""Keys to access video frames that requires to be decoded into images.
Note: It is empty if the dataset contains images only,
or equal to `self.cameras` if the dataset contains videos only,
or can even be a subset of `self.cameras` in a case of a mixed image/video dataset.
"""
video_frame_keys = []
for key, feats in self.hf_dataset.features.items():
if isinstance(feats, VideoFrame):
video_frame_keys.append(key)
return video_frame_keys
@property
def num_samples(self) -> int:
"""Number of samples/frames."""
return len(self.hf_dataset)
@property
def num_episodes(self) -> int:
"""Number of episodes."""
return len(self.hf_dataset.unique("episode_index"))
@property
def tolerance_s(self) -> float:
"""Tolerance in seconds used to discard loaded frames when their timestamps
are not close enough from the requested frames. It is only used when `delta_timestamps`
is provided or when loading video frames from mp4 files.
"""
# 1e-4 to account for possible numerical error
return 1 / self.fps - 1e-4
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
item = self.hf_dataset[idx]
if self.delta_timestamps is not None:
item = load_previous_and_future_frames(
item,
self.hf_dataset,
self.episode_data_index,
self.delta_timestamps,
self.tolerance_s,
)
if self.video:
item = load_from_videos(
item,
self.video_frame_keys,
self.videos_dir,
self.tolerance_s,
)
if self.transform is not None:
item = self.transform(item)
return item
def __repr__(self):
return (
f"{self.__class__.__name__}(\n"
f" Repository ID: '{self.repo_id}',\n"
f" Version: '{self.version}',\n"
f" Split: '{self.split}',\n"
f" Number of Samples: {self.num_samples},\n"
f" Number of Episodes: {self.num_episodes},\n"
f" Type: {'video (.mp4)' if self.video else 'image (.png)'},\n"
f" Recorded Frames per Second: {self.fps},\n"
f" Camera Keys: {self.camera_keys},\n"
f" Video Frame Keys: {self.video_frame_keys if self.video else 'N/A'},\n"
f" Transformations: {self.transform},\n"
f")"
)
@classmethod
def from_preloaded(
cls,
repo_id: str,
version: str | None = CODEBASE_VERSION,
root: Path | None = None,
split: str = "train",
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
# additional preloaded attributes
hf_dataset=None,
episode_data_index=None,
stats=None,
info=None,
videos_dir=None,
):
# create an empty object of type LeRobotDataset
obj = cls.__new__(cls)
obj.repo_id = repo_id
obj.version = version
obj.root = root
obj.split = split
obj.transform = transform
obj.delta_timestamps = delta_timestamps
obj.hf_dataset = hf_dataset
obj.episode_data_index = episode_data_index
obj.stats = stats
obj.info = info
obj.videos_dir = videos_dir
return obj