Files
lerobot_piper/lerobot/common/datasets/aloha.py
Alexander Soare 1a1308d62f fix environment seeding
add fixes for reproducibility

only try to start env if it is closed

revision

fix normalization and data type

Improve README

Improve README

Tests are passing, Eval pretrained model works, Add gif

Update gif

Update gif

Update gif

Update gif

Update README

Update README

update minor

Update README.md

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>

Update README.md

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>

Address suggestions

Update thumbnail + stats

Update thumbnail + stats

Update README.md

Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>

Add more comments

Add test_examples.py
2024-03-26 10:10:43 +00:00

186 lines
7.0 KiB
Python

import logging
from pathlib import Path
from typing import Callable
import einops
import gdown
import h5py
import torch
import torchrl
import tqdm
from tensordict import TensorDict
from torchrl.data.replay_buffers.samplers import Sampler
from torchrl.data.replay_buffers.storages import TensorStorage
from torchrl.data.replay_buffers.writers import Writer
from lerobot.common.datasets.abstract import AbstractDataset
DATASET_IDS = [
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
]
FOLDER_URLS = {
"aloha_sim_insertion_human": "https://drive.google.com/drive/folders/1RgyD0JgTX30H4IM5XZn8I3zSV_mr8pyF",
"aloha_sim_insertion_scripted": "https://drive.google.com/drive/folders/1TsojQQSXtHEoGnqgJ3gmpPQR2DPLtS2N",
"aloha_sim_transfer_cube_human": "https://drive.google.com/drive/folders/1sc-E4QYW7A0o23m1u2VWNGVq5smAsfCo",
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/drive/folders/1aRyoOhQwxhyt1J8XgEig4s6kzaw__LXj",
}
EP48_URLS = {
"aloha_sim_insertion_human": "https://drive.google.com/file/d/18Cudl6nikDtgRolea7je8iF_gGKzynOP/view?usp=drive_link",
"aloha_sim_insertion_scripted": "https://drive.google.com/file/d/1wfMSZ24oOh5KR_0aaP3Cnu_c4ZCveduB/view?usp=drive_link",
"aloha_sim_transfer_cube_human": "https://drive.google.com/file/d/18smMymtr8tIxaNUQ61gW6dG50pt3MvGq/view?usp=drive_link",
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/file/d/1pnGIOd-E4-rhz2P3VxpknMKRZCoKt6eI/view?usp=drive_link",
}
EP49_URLS = {
"aloha_sim_insertion_human": "https://drive.google.com/file/d/1C1kZYyROzs-PrLc0SkDgUgMi4-L3lauE/view?usp=drive_link",
"aloha_sim_insertion_scripted": "https://drive.google.com/file/d/17EuCUWS6uCCr6yyNzpXdcdE-_TTNCKtf/view?usp=drive_link",
"aloha_sim_transfer_cube_human": "https://drive.google.com/file/d/1Nk7l53d9sJoGDBKAOnNrExX5nLacATc6/view?usp=drive_link",
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/file/d/1GKReZHrXU73NMiC5zKCq_UtqPVtYq8eo/view?usp=drive_link",
}
NUM_EPISODES = {
"aloha_sim_insertion_human": 50,
"aloha_sim_insertion_scripted": 50,
"aloha_sim_transfer_cube_human": 50,
"aloha_sim_transfer_cube_scripted": 50,
}
EPISODE_LEN = {
"aloha_sim_insertion_human": 500,
"aloha_sim_insertion_scripted": 400,
"aloha_sim_transfer_cube_human": 400,
"aloha_sim_transfer_cube_scripted": 400,
}
CAMERAS = {
"aloha_sim_insertion_human": ["top"],
"aloha_sim_insertion_scripted": ["top"],
"aloha_sim_transfer_cube_human": ["top"],
"aloha_sim_transfer_cube_scripted": ["top"],
}
def download(data_dir, dataset_id):
assert dataset_id in DATASET_IDS
assert dataset_id in FOLDER_URLS
assert dataset_id in EP48_URLS
assert dataset_id in EP49_URLS
data_dir.mkdir(parents=True, exist_ok=True)
gdown.download_folder(FOLDER_URLS[dataset_id], output=str(data_dir))
# because of the 50 files limit per directory, two files episode 48 and 49 were missing
gdown.download(EP48_URLS[dataset_id], output=str(data_dir / "episode_48.hdf5"), fuzzy=True)
gdown.download(EP49_URLS[dataset_id], output=str(data_dir / "episode_49.hdf5"), fuzzy=True)
class AlohaDataset(AbstractDataset):
available_datasets = DATASET_IDS
def __init__(
self,
dataset_id: str,
version: str | None = "v1.2",
batch_size: int | None = None,
*,
shuffle: bool = True,
root: Path | None = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: Sampler | None = None,
collate_fn: Callable | None = None,
writer: Writer | None = None,
transform: "torchrl.envs.Transform" = None,
):
super().__init__(
dataset_id,
version,
batch_size,
shuffle=shuffle,
root=root,
pin_memory=pin_memory,
prefetch=prefetch,
sampler=sampler,
collate_fn=collate_fn,
writer=writer,
transform=transform,
)
@property
def stats_patterns(self) -> dict:
d = {
("observation", "state"): "b c -> c",
("action",): "b c -> c",
}
for cam in CAMERAS[self.dataset_id]:
d[("observation", "image", cam)] = "b c h w -> c 1 1"
return d
@property
def image_keys(self) -> list:
return [("observation", "image", cam) for cam in CAMERAS[self.dataset_id]]
def _download_and_preproc_obsolete(self):
assert self.root is not None
raw_dir = self.root / f"{self.dataset_id}_raw"
if not raw_dir.is_dir():
download(raw_dir, self.dataset_id)
total_num_frames = 0
logging.info("Compute total number of frames to initialize offline buffer")
for ep_id in range(NUM_EPISODES[self.dataset_id]):
ep_path = raw_dir / f"episode_{ep_id}.hdf5"
with h5py.File(ep_path, "r") as ep:
total_num_frames += ep["/action"].shape[0] - 1
logging.info(f"{total_num_frames=}")
logging.info("Initialize and feed offline buffer")
idxtd = 0
for ep_id in tqdm.tqdm(range(NUM_EPISODES[self.dataset_id])):
ep_path = raw_dir / f"episode_{ep_id}.hdf5"
with h5py.File(ep_path, "r") as ep:
ep_num_frames = ep["/action"].shape[0]
# last step of demonstration is considered done
done = torch.zeros(ep_num_frames, 1, dtype=torch.bool)
done[-1] = True
state = torch.from_numpy(ep["/observations/qpos"][:])
action = torch.from_numpy(ep["/action"][:])
ep_td = TensorDict(
{
("observation", "state"): state[:-1],
"action": action[:-1],
"episode": torch.tensor([ep_id] * (ep_num_frames - 1)),
"frame_id": torch.arange(0, ep_num_frames - 1, 1),
("next", "observation", "state"): state[1:],
# TODO: compute reward and success
# ("next", "reward"): reward[1:],
("next", "done"): done[1:],
# ("next", "success"): success[1:],
},
batch_size=ep_num_frames - 1,
)
for cam in CAMERAS[self.dataset_id]:
image = torch.from_numpy(ep[f"/observations/images/{cam}"][:])
image = einops.rearrange(image, "b h w c -> b c h w").contiguous()
ep_td["observation", "image", cam] = image[:-1]
ep_td["next", "observation", "image", cam] = image[1:]
if ep_id == 0:
# hack to initialize tensordict data structure to store episodes
td_data = ep_td[0].expand(total_num_frames).memmap_like(self.root / f"{self.dataset_id}")
td_data[idxtd : idxtd + len(ep_td)] = ep_td
idxtd = idxtd + len(ep_td)
return TensorStorage(td_data.lock_())