Files
lerobot_piper/lerobot/common/envs/simxarm/env.py
Alexander Soare 1a1308d62f fix environment seeding
add fixes for reproducibility

only try to start env if it is closed

revision

fix normalization and data type

Improve README

Improve README

Tests are passing, Eval pretrained model works, Add gif

Update gif

Update gif

Update gif

Update gif

Update README

Update README

update minor

Update README.md

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>

Update README.md

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>

Address suggestions

Update thumbnail + stats

Update thumbnail + stats

Update README.md

Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>

Add more comments

Add test_examples.py
2024-03-26 10:10:43 +00:00

238 lines
7.9 KiB
Python

import importlib
import logging
from collections import deque
from typing import Optional
import einops
import numpy as np
import torch
from tensordict import TensorDict
from torchrl.data.tensor_specs import (
BoundedTensorSpec,
CompositeSpec,
DiscreteTensorSpec,
UnboundedContinuousTensorSpec,
)
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
from lerobot.common.envs.abstract import AbstractEnv
from lerobot.common.utils import set_global_seed
MAX_NUM_ACTIONS = 4
_has_gym = importlib.util.find_spec("gymnasium") is not None
class SimxarmEnv(AbstractEnv):
name = "simxarm"
available_tasks = ["lift"]
def __init__(
self,
task,
frame_skip: int = 1,
from_pixels: bool = False,
pixels_only: bool = False,
image_size=None,
seed=1337,
device="cpu",
num_prev_obs=0,
num_prev_action=0,
):
super().__init__(
task=task,
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=image_size,
seed=seed,
device=device,
num_prev_obs=num_prev_obs,
num_prev_action=num_prev_action,
)
def _make_env(self):
if not _has_gym:
raise ImportError("Cannot import gymnasium.")
import gymnasium
from lerobot.common.envs.simxarm.simxarm import TASKS
if self.task not in TASKS:
raise ValueError(f"Unknown task {self.task}. Must be one of {list(TASKS.keys())}")
self._env = TASKS[self.task]["env"]()
num_actions = len(TASKS[self.task]["action_space"])
self._action_space = gymnasium.spaces.Box(low=-1.0, high=1.0, shape=(num_actions,))
self._action_padding = np.zeros((MAX_NUM_ACTIONS - num_actions), dtype=np.float32)
if "w" not in TASKS[self.task]["action_space"]:
self._action_padding[-1] = 1.0
def render(self, mode="rgb_array", width=384, height=384):
return self._env.render(mode, width=width, height=height)
def _format_raw_obs(self, raw_obs):
if self.from_pixels:
image = self.render(mode="rgb_array", width=self.image_size, height=self.image_size)
image = image.transpose(2, 0, 1) # (H, W, C) -> (C, H, W)
image = torch.tensor(image.copy(), dtype=torch.uint8)
obs = {"image": image}
if not self.pixels_only:
obs["state"] = torch.tensor(self._env.robot_state, dtype=torch.float32)
else:
obs = {"state": torch.tensor(raw_obs["observation"], dtype=torch.float32)}
# obs = TensorDict(obs, batch_size=[])
return obs
def _reset(self, tensordict: Optional[TensorDict] = None):
td = tensordict
if td is None or td.is_empty():
raw_obs = self._env.reset()
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue = deque(
[obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue = deque(
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": TensorDict(obs, batch_size=[]),
"done": torch.tensor([False], dtype=torch.bool),
},
batch_size=[],
)
else:
raise NotImplementedError()
return td
def _step(self, tensordict: TensorDict):
td = tensordict
action = td["action"].numpy()
# step expects shape=(4,) so we pad if necessary
action = np.concatenate([action, self._action_padding])
# TODO(rcadene): add info["is_success"] and info["success"] ?
sum_reward = 0
if action.ndim == 1:
action = einops.repeat(action, "c -> t c", t=self.frame_skip)
else:
if self.frame_skip > 1:
raise NotImplementedError()
num_action_steps = action.shape[0]
for i in range(num_action_steps):
raw_obs, reward, done, info = self._env.step(action[i])
sum_reward += reward
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue.append(obs["image"])
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue.append(obs["state"])
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": self._format_raw_obs(raw_obs),
"reward": torch.tensor([sum_reward], dtype=torch.float32),
"done": torch.tensor([done], dtype=torch.bool),
"success": torch.tensor([info["success"]], dtype=torch.bool),
},
batch_size=[],
)
return td
def _make_spec(self):
obs = {}
if self.from_pixels:
image_shape = (3, self.image_size, self.image_size)
if self.num_prev_obs > 0:
image_shape = (self.num_prev_obs + 1, *image_shape)
obs["image"] = BoundedTensorSpec(
low=0,
high=255,
shape=image_shape,
dtype=torch.uint8,
device=self.device,
)
if not self.pixels_only:
state_shape = (len(self._env.robot_state),)
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = UnboundedContinuousTensorSpec(
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
else:
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
state_shape = self._env.observation_space["observation"].shape
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = UnboundedContinuousTensorSpec(
# TODO:
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
self.observation_spec = CompositeSpec({"observation": obs})
self.action_spec = _gym_to_torchrl_spec_transform(
self._action_space,
device=self.device,
)
self.reward_spec = UnboundedContinuousTensorSpec(
shape=(1,),
dtype=torch.float32,
device=self.device,
)
self.done_spec = CompositeSpec(
{
"done": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
"success": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
}
)
def _set_seed(self, seed: Optional[int]):
set_global_seed(seed)
self._seed = seed
# TODO(aliberts): change self._reset so that it takes in a seed value
logging.warning("simxarm env is not properly seeded")