WIP Aloha env tests pass Rendering works (fps look fast tho? TODO action bounding is too wide [-1,1]) Update README Copy past from act repo Remove download.py add a WIP for Simxarm Remove download.py add a WIP for Simxarm Add act yaml (TODO: try train.py) Training can runs (TODO: eval) Add tasks without end_effector that are compatible with dataset, Eval can run (TODO: training and pretrained model) Add AbstractEnv, Refactor AlohaEnv, Add rendering_hook in env, Minor modifications, (TODO: Refactor Pusht and Simxarm) poetry lock fix bug in compute_stats for action normalization fix more bugs in normalization fix training fix import PushtEnv inheriates AbstractEnv, Improve factory Normalization Add _make_env to EnvAbstract Add call_rendering_hooks to pusht env SimxarmEnv inherites from AbstractEnv (NOT TESTED) Add aloha tests artifacts + update pusht stats fix image normalization: before env was in [0,1] but dataset in [0,255], and now both in [0,255] Small fix on simxarm Add next to obs Add top camera to Aloha env (TODO: make it compatible with set of cameras) Add top camera to Aloha env (TODO: make it compatible with set of cameras)
116 lines
4.2 KiB
Python
116 lines
4.2 KiB
Python
from typing import List
|
|
|
|
import torch
|
|
import torchvision
|
|
from torch import nn
|
|
from torchvision.models._utils import IntermediateLayerGetter
|
|
|
|
from .position_encoding import build_position_encoding
|
|
from .utils import NestedTensor, is_main_process
|
|
|
|
|
|
class FrozenBatchNorm2d(torch.nn.Module):
|
|
"""
|
|
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
|
|
|
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
|
|
without which any other policy_models than torchvision.policy_models.resnet[18,34,50,101]
|
|
produce nans.
|
|
"""
|
|
|
|
def __init__(self, n):
|
|
super().__init__()
|
|
self.register_buffer("weight", torch.ones(n))
|
|
self.register_buffer("bias", torch.zeros(n))
|
|
self.register_buffer("running_mean", torch.zeros(n))
|
|
self.register_buffer("running_var", torch.ones(n))
|
|
|
|
def _load_from_state_dict(
|
|
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
):
|
|
num_batches_tracked_key = prefix + "num_batches_tracked"
|
|
if num_batches_tracked_key in state_dict:
|
|
del state_dict[num_batches_tracked_key]
|
|
|
|
super()._load_from_state_dict(
|
|
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
)
|
|
|
|
def forward(self, x):
|
|
# move reshapes to the beginning
|
|
# to make it fuser-friendly
|
|
w = self.weight.reshape(1, -1, 1, 1)
|
|
b = self.bias.reshape(1, -1, 1, 1)
|
|
rv = self.running_var.reshape(1, -1, 1, 1)
|
|
rm = self.running_mean.reshape(1, -1, 1, 1)
|
|
eps = 1e-5
|
|
scale = w * (rv + eps).rsqrt()
|
|
bias = b - rm * scale
|
|
return x * scale + bias
|
|
|
|
|
|
class BackboneBase(nn.Module):
|
|
def __init__(
|
|
self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool
|
|
):
|
|
super().__init__()
|
|
# for name, parameter in backbone.named_parameters(): # only train later layers # TODO do we want this?
|
|
# if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
|
|
# parameter.requires_grad_(False)
|
|
if return_interm_layers:
|
|
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
|
|
else:
|
|
return_layers = {"layer4": "0"}
|
|
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
|
|
self.num_channels = num_channels
|
|
|
|
def forward(self, tensor):
|
|
xs = self.body(tensor)
|
|
return xs
|
|
# out: Dict[str, NestedTensor] = {}
|
|
# for name, x in xs.items():
|
|
# m = tensor_list.mask
|
|
# assert m is not None
|
|
# mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
|
# out[name] = NestedTensor(x, mask)
|
|
# return out
|
|
|
|
|
|
class Backbone(BackboneBase):
|
|
"""ResNet backbone with frozen BatchNorm."""
|
|
|
|
def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool):
|
|
backbone = getattr(torchvision.models, name)(
|
|
replace_stride_with_dilation=[False, False, dilation],
|
|
pretrained=is_main_process(),
|
|
norm_layer=FrozenBatchNorm2d,
|
|
) # pretrained # TODO do we want frozen batch_norm??
|
|
num_channels = 512 if name in ("resnet18", "resnet34") else 2048
|
|
super().__init__(backbone, train_backbone, num_channels, return_interm_layers)
|
|
|
|
|
|
class Joiner(nn.Sequential):
|
|
def __init__(self, backbone, position_embedding):
|
|
super().__init__(backbone, position_embedding)
|
|
|
|
def forward(self, tensor_list: NestedTensor):
|
|
xs = self[0](tensor_list)
|
|
out: List[NestedTensor] = []
|
|
pos = []
|
|
for _, x in xs.items():
|
|
out.append(x)
|
|
# position encoding
|
|
pos.append(self[1](x).to(x.dtype))
|
|
|
|
return out, pos
|
|
|
|
|
|
def build_backbone(args):
|
|
position_embedding = build_position_encoding(args)
|
|
train_backbone = args.lr_backbone > 0
|
|
return_interm_layers = args.masks
|
|
backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation)
|
|
model = Joiner(backbone, position_embedding)
|
|
model.num_channels = backbone.num_channels
|
|
return model
|