64 lines
1.9 KiB
Python
64 lines
1.9 KiB
Python
import torch
|
|
from datasets import load_dataset
|
|
|
|
from lerobot.common.datasets.utils import load_previous_and_future_frames
|
|
|
|
|
|
class PushtDataset(torch.utils.data.Dataset):
|
|
"""
|
|
https://huggingface.co/datasets/lerobot/pusht
|
|
|
|
Arguments
|
|
----------
|
|
delta_timestamps : dict[list[float]] | None, optional
|
|
Loads data from frames with a shift in timestamps with a different strategy for each data key (e.g. state, action or image)
|
|
If `None`, no shift is applied to current timestamp and the data from the current frame is loaded.
|
|
"""
|
|
|
|
available_datasets = ["pusht"]
|
|
fps = 10
|
|
image_keys = ["observation.image"]
|
|
|
|
def __init__(
|
|
self,
|
|
dataset_id: str,
|
|
version: str | None = "v1.0",
|
|
transform: callable = None,
|
|
delta_timestamps: dict[list[float]] | None = None,
|
|
):
|
|
super().__init__()
|
|
self.dataset_id = dataset_id
|
|
self.version = version
|
|
self.transform = transform
|
|
self.delta_timestamps = delta_timestamps
|
|
# self.data_dict = load_dataset(f"lerobot/{self.dataset_id}", revision=self.version, split="train")
|
|
self.data_dict = load_dataset(f"lerobot/{self.dataset_id}", split="train")
|
|
self.data_dict = self.data_dict.with_format("torch")
|
|
self.data_dict.push_to_hub(f"lerobot/{dataset_id}", token=True, revision="v1.0")
|
|
|
|
@property
|
|
def num_samples(self) -> int:
|
|
return len(self.data_dict)
|
|
|
|
@property
|
|
def num_episodes(self) -> int:
|
|
return len(self.data_dict.unique("episode_id"))
|
|
|
|
def __len__(self):
|
|
return self.num_samples
|
|
|
|
def __getitem__(self, idx):
|
|
item = self.data_dict[idx]
|
|
|
|
if self.delta_timestamps is not None:
|
|
item = load_previous_and_future_frames(
|
|
item,
|
|
self.data_dict,
|
|
self.delta_timestamps,
|
|
)
|
|
|
|
if self.transform is not None:
|
|
item = self.transform(item)
|
|
|
|
return item
|