Files
lerobot_piper/lerobot/common/optim/optimizers.py
Remi 638d411cd3 Add Pi0 (#681)
Co-authored-by: Simon Alibert <simon.alibert@huggingface.co>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: Pablo <pablo.montalvo.leroux@gmail.com>
2025-02-04 18:01:04 +01:00

71 lines
1.7 KiB
Python

import abc
from dataclasses import asdict, dataclass
import draccus
import torch
@dataclass
class OptimizerConfig(draccus.ChoiceRegistry, abc.ABC):
lr: float
weight_decay: float
grad_clip_norm: float
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
@classmethod
def default_choice_name(cls) -> str | None:
return "adam"
@abc.abstractmethod
def build(self) -> torch.optim.Optimizer:
raise NotImplementedError
@OptimizerConfig.register_subclass("adam")
@dataclass
class AdamConfig(OptimizerConfig):
lr: float = 1e-3
betas: tuple[float, float] = (0.9, 0.999)
eps: float = 1e-8
weight_decay: float = 0.0
grad_clip_norm: float = 10.0
def build(self, params: dict) -> torch.optim.Optimizer:
kwargs = asdict(self)
kwargs.pop("grad_clip_norm")
return torch.optim.Adam(params, **kwargs)
@OptimizerConfig.register_subclass("adamw")
@dataclass
class AdamWConfig(OptimizerConfig):
lr: float = 1e-3
betas: tuple[float, float] = (0.9, 0.999)
eps: float = 1e-8
weight_decay: float = 1e-2
grad_clip_norm: float = 10.0
def build(self, params: dict) -> torch.optim.Optimizer:
kwargs = asdict(self)
kwargs.pop("grad_clip_norm")
return torch.optim.AdamW(params, **kwargs)
@OptimizerConfig.register_subclass("sgd")
@dataclass
class SGDConfig(OptimizerConfig):
lr: float = 1e-3
momentum: float = 0.0
dampening: float = 0.0
nesterov: bool = False
weight_decay: float = 0.0
grad_clip_norm: float = 10.0
def build(self, params: dict) -> torch.optim.Optimizer:
kwargs = asdict(self)
kwargs.pop("grad_clip_norm")
return torch.optim.SGD(params, **kwargs)