91 lines
2.0 KiB
YAML
91 lines
2.0 KiB
YAML
# @package _global_
|
|
|
|
seed: 100000
|
|
horizon: 16
|
|
n_obs_steps: 2
|
|
n_action_steps: 8
|
|
dataset_obs_steps: ${n_obs_steps}
|
|
past_action_visible: False
|
|
keypoint_visible_rate: 1.0
|
|
|
|
eval_episodes: 50
|
|
eval_freq: 5000
|
|
save_freq: 5000
|
|
log_freq: 250
|
|
|
|
offline_steps: 200000
|
|
online_steps: 0
|
|
|
|
offline_prioritized_sampler: true
|
|
|
|
policy:
|
|
name: diffusion
|
|
|
|
pretrained_model_path:
|
|
|
|
# Environment.
|
|
# Inherit these from the environment config.
|
|
state_dim: ???
|
|
action_dim: ???
|
|
image_size:
|
|
- ${env.image_size} # height
|
|
- ${env.image_size} # width
|
|
|
|
# Inputs / output structure.
|
|
n_obs_steps: ${n_obs_steps}
|
|
horizon: ${horizon}
|
|
n_action_steps: ${n_action_steps}
|
|
|
|
# Vision preprocessing.
|
|
image_normalization_mean: [0.5, 0.5, 0.5]
|
|
image_normalization_std: [0.5, 0.5, 0.5]
|
|
|
|
# Architecture / modeling.
|
|
# Vision backbone.
|
|
vision_backbone: resnet18
|
|
crop_shape: [84, 84]
|
|
crop_is_random: True
|
|
use_pretrained_backbone: false
|
|
use_group_norm: True
|
|
spatial_softmax_num_keypoints: 32
|
|
# Unet.
|
|
down_dims: [512, 1024, 2048]
|
|
kernel_size: 5
|
|
n_groups: 8
|
|
diffusion_step_embed_dim: 128
|
|
use_film_scale_modulation: True
|
|
# Noise scheduler.
|
|
num_train_timesteps: 100
|
|
beta_schedule: squaredcos_cap_v2
|
|
beta_start: 0.0001
|
|
beta_end: 0.02
|
|
prediction_type: epsilon # epsilon / sample
|
|
clip_sample: True
|
|
clip_sample_range: 1.0
|
|
|
|
# Inference
|
|
num_inference_steps: 100
|
|
|
|
# ---
|
|
# TODO(alexander-soare): Remove these from the policy config.
|
|
batch_size: 64
|
|
grad_clip_norm: 10
|
|
lr: 1.0e-4
|
|
lr_scheduler: cosine
|
|
lr_warmup_steps: 500
|
|
adam_betas: [0.95, 0.999]
|
|
adam_eps: 1.0e-8
|
|
adam_weight_decay: 1.0e-6
|
|
utd: 1
|
|
use_ema: true
|
|
ema_update_after_step: 0
|
|
ema_min_alpha: 0.0
|
|
ema_max_alpha: 0.9999
|
|
ema_inv_gamma: 1.0
|
|
ema_power: 0.75
|
|
|
|
delta_timestamps:
|
|
observation.image: "[i / ${fps} for i in range(1 - ${n_obs_steps}, 1)]"
|
|
observation.state: "[i / ${fps} for i in range(1 - ${n_obs_steps}, 1)]"
|
|
action: "[i / ${fps} for i in range(1 - ${n_obs_steps}, 1 - ${n_obs_steps} + ${policy.horizon})]"
|