WIP Aloha env tests pass Rendering works (fps look fast tho? TODO action bounding is too wide [-1,1]) Update README Copy past from act repo Remove download.py add a WIP for Simxarm Remove download.py add a WIP for Simxarm Add act yaml (TODO: try train.py) Training can runs (TODO: eval) Add tasks without end_effector that are compatible with dataset, Eval can run (TODO: training and pretrained model) Add AbstractEnv, Refactor AlohaEnv, Add rendering_hook in env, Minor modifications, (TODO: Refactor Pusht and Simxarm) poetry lock fix bug in compute_stats for action normalization fix more bugs in normalization fix training fix import PushtEnv inheriates AbstractEnv, Improve factory Normalization Add _make_env to EnvAbstract Add call_rendering_hooks to pusht env SimxarmEnv inherites from AbstractEnv (NOT TESTED) Add aloha tests artifacts + update pusht stats fix image normalization: before env was in [0,1] but dataset in [0,255], and now both in [0,255] Small fix on simxarm Add next to obs Add top camera to Aloha env (TODO: make it compatible with set of cameras) Add top camera to Aloha env (TODO: make it compatible with set of cameras)
40 lines
1020 B
Python
40 lines
1020 B
Python
import numpy as np
|
|
|
|
|
|
def sample_box_pose():
|
|
x_range = [0.0, 0.2]
|
|
y_range = [0.4, 0.6]
|
|
z_range = [0.05, 0.05]
|
|
|
|
ranges = np.vstack([x_range, y_range, z_range])
|
|
cube_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
|
|
|
|
cube_quat = np.array([1, 0, 0, 0])
|
|
return np.concatenate([cube_position, cube_quat])
|
|
|
|
|
|
def sample_insertion_pose():
|
|
# Peg
|
|
x_range = [0.1, 0.2]
|
|
y_range = [0.4, 0.6]
|
|
z_range = [0.05, 0.05]
|
|
|
|
ranges = np.vstack([x_range, y_range, z_range])
|
|
peg_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
|
|
|
|
peg_quat = np.array([1, 0, 0, 0])
|
|
peg_pose = np.concatenate([peg_position, peg_quat])
|
|
|
|
# Socket
|
|
x_range = [-0.2, -0.1]
|
|
y_range = [0.4, 0.6]
|
|
z_range = [0.05, 0.05]
|
|
|
|
ranges = np.vstack([x_range, y_range, z_range])
|
|
socket_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
|
|
|
|
socket_quat = np.array([1, 0, 0, 0])
|
|
socket_pose = np.concatenate([socket_position, socket_quat])
|
|
|
|
return peg_pose, socket_pose
|