Files
lerobot_piper/lerobot/configs/policy/act.yaml
Remi Cadene 9d002032d1 Add Aloha env and ACT policy
WIP Aloha env tests pass

Rendering works (fps look fast tho? TODO action bounding is too wide [-1,1])

Update README

Copy past from act repo

Remove download.py add a WIP for Simxarm

Remove download.py add a WIP for Simxarm

Add act yaml (TODO: try train.py)

Training can runs (TODO: eval)

Add tasks without end_effector that are compatible with dataset, Eval can run (TODO: training and pretrained model)

Add AbstractEnv, Refactor AlohaEnv, Add rendering_hook in env, Minor modifications, (TODO: Refactor Pusht and Simxarm)

poetry lock

fix bug in compute_stats for action normalization

fix more bugs in normalization

fix training

fix import

PushtEnv inheriates AbstractEnv, Improve factory Normalization

Add _make_env to EnvAbstract

Add call_rendering_hooks to pusht env

SimxarmEnv inherites from AbstractEnv (NOT TESTED)

Add aloha tests artifacts + update pusht stats

fix image normalization: before env was in [0,1] but dataset in [0,255], and now both in [0,255]

Small fix on simxarm

Add next to obs

Add top camera to Aloha env (TODO: make it compatible with set of cameras)

Add top camera to Aloha env (TODO: make it compatible with set of cameras)
2024-03-12 10:27:48 +00:00

59 lines
939 B
YAML

# @package _global_
offline_steps: 1344000
online_steps: 0
eval_episodes: 1
eval_freq: 10000
save_freq: 100000
log_freq: 250
horizon: 100
n_obs_steps: 1
n_latency_steps: 0
# when temporal_agg=False, n_action_steps=horizon
n_action_steps: ${horizon}
policy:
name: act
pretrained_model_path:
lr: 1e-5
lr_backbone: 1e-5
weight_decay: 1e-4
grad_clip_norm: 10
backbone: resnet18
num_queries: ${horizon} # chunk_size
horizon: ${horizon} # chunk_size
kl_weight: 10
hidden_dim: 512
dim_feedforward: 3200
enc_layers: 4
dec_layers: 7
nheads: 8
#camera_names: [top, front_close, left_pillar, right_pillar]
camera_names: [top]
position_embedding: sine
masks: false
dilation: false
dropout: 0.1
pre_norm: false
vae: true
batch_size: 8
per_alpha: 0.6
per_beta: 0.4
balanced_sampling: false
utd: 1
n_obs_steps: ${n_obs_steps}
temporal_agg: false
state_dim: ???
action_dim: ???