Files
lerobot_piper/lerobot/common/logger.py
2024-02-29 23:31:32 +00:00

149 lines
5.2 KiB
Python

import contextlib
import os
from pathlib import Path
import numpy as np
from omegaconf import OmegaConf
from termcolor import colored
def make_dir(dir_path):
"""Create directory if it does not already exist."""
with contextlib.suppress(OSError):
dir_path.mkdir(parents=True, exist_ok=True)
return dir_path
def print_run(cfg, reward=None):
"""Pretty-printing of run information. Call at start of training."""
prefix, color, attrs = " ", "green", ["bold"]
def limstr(s, maxlen=32):
return str(s[:maxlen]) + "..." if len(str(s)) > maxlen else s
def pprint(k, v):
print(
prefix + colored(f'{k.capitalize() + ":":<16}', color, attrs=attrs),
limstr(v),
)
kvs = [
("task", cfg.env.task),
("offline_steps", f"{cfg.offline_steps}"),
("online_steps", f"{cfg.online_steps}"),
("action_repeat", f"{cfg.env.action_repeat}"),
# ('observations', 'x'.join([str(s) for s in cfg.obs_shape])),
# ('actions', cfg.action_dim),
# ('experiment', cfg.exp_name),
]
if reward is not None:
kvs.append(("episode reward", colored(str(int(reward)), "white", attrs=["bold"])))
w = np.max([len(limstr(str(kv[1]))) for kv in kvs]) + 21
div = "-" * w
print(div)
for k, v in kvs:
pprint(k, v)
print(div)
def cfg_to_group(cfg, return_list=False):
"""Return a wandb-safe group name for logging. Optionally returns group name as list."""
# lst = [cfg.task, cfg.modality, re.sub("[^0-9a-zA-Z]+", "-", cfg.exp_name)]
lst = [
f"env:{cfg.env.name}",
f"seed:{cfg.seed}",
]
return lst if return_list else "-".join(lst)
class Logger:
"""Primary logger object. Logs either locally or using wandb."""
def __init__(self, log_dir, job_name, cfg):
self._log_dir = Path(log_dir)
self._log_dir.mkdir(parents=True, exist_ok=True)
self._job_name = job_name
self._model_dir = self._log_dir / "models"
self._buffer_dir = self._log_dir / "buffers"
self._save_model = cfg.save_model
self._save_buffer = cfg.save_buffer
self._group = cfg_to_group(cfg)
self._seed = cfg.seed
self._cfg = cfg
self._eval = []
print_run(cfg)
project = cfg.get("wandb", {}).get("project")
entity = cfg.get("wandb", {}).get("entity")
enable_wandb = cfg.get("wandb", {}).get("enable", False)
run_offline = not enable_wandb or not project or not entity
if run_offline:
print(colored("Logs will be saved locally.", "yellow", attrs=["bold"]))
self._wandb = None
else:
os.environ["WANDB_SILENT"] = "true"
import wandb
wandb.init(
project=project,
entity=entity,
name=job_name,
notes=cfg.get("wandb", {}).get("notes"),
# group=self._group,
tags=cfg_to_group(cfg, return_list=True),
dir=self._log_dir,
config=OmegaConf.to_container(cfg, resolve=True),
# TODO(rcadene): try set to True
save_code=False,
# TODO(rcadene): split train and eval, and run async eval with job_type="eval"
job_type="train_eval",
# TODO(rcadene): add resume option
resume=None,
)
print(colored("Logs will be synced with wandb.", "blue", attrs=["bold"]))
self._wandb = wandb
def save_model(self, policy, identifier):
if self._save_model:
self._model_dir.mkdir(parents=True, exist_ok=True)
fp = self._model_dir / f"{str(identifier)}.pt"
policy.save(fp)
if self._wandb:
artifact = self._wandb.Artifact(
self._group + "-" + str(self._seed) + "-" + str(identifier),
type="model",
)
artifact.add_file(fp)
self._wandb.log_artifact(artifact)
def save_buffer(self, buffer, identifier):
self._buffer_dir.mkdir(parents=True, exist_ok=True)
fp = self._buffer_dir / f"{str(identifier)}.pkl"
buffer.save(fp)
if self._wandb:
artifact = self._wandb.Artifact(
self._group + "-" + str(self._seed) + "-" + str(identifier),
type="buffer",
)
artifact.add_file(fp)
self._wandb.log_artifact(artifact)
def finish(self, agent, buffer):
if self._save_model:
self.save_model(agent, identifier="final")
if self._save_buffer:
self.save_buffer(buffer, identifier="buffer")
if self._wandb:
self._wandb.finish()
print_run(self._cfg, self._eval[-1][-1])
def log_dict(self, d, step, mode="train"):
assert mode in {"train", "eval"}
if self._wandb is not None:
for k, v in d.items():
self._wandb.log({f"{mode}/{k}": v}, step=step)
def log_video(self, video, step, mode="train"):
assert mode in {"train", "eval"}
wandb_video = self._wandb.Video(video, fps=self.cfg.fps, format="mp4")
self._wandb.log({f"{mode}/video": wandb_video}, step=step)