Files
lerobot_piper/lerobot/common/envs/abstract.py
Remi Cadene 9d002032d1 Add Aloha env and ACT policy
WIP Aloha env tests pass

Rendering works (fps look fast tho? TODO action bounding is too wide [-1,1])

Update README

Copy past from act repo

Remove download.py add a WIP for Simxarm

Remove download.py add a WIP for Simxarm

Add act yaml (TODO: try train.py)

Training can runs (TODO: eval)

Add tasks without end_effector that are compatible with dataset, Eval can run (TODO: training and pretrained model)

Add AbstractEnv, Refactor AlohaEnv, Add rendering_hook in env, Minor modifications, (TODO: Refactor Pusht and Simxarm)

poetry lock

fix bug in compute_stats for action normalization

fix more bugs in normalization

fix training

fix import

PushtEnv inheriates AbstractEnv, Improve factory Normalization

Add _make_env to EnvAbstract

Add call_rendering_hooks to pusht env

SimxarmEnv inherites from AbstractEnv (NOT TESTED)

Add aloha tests artifacts + update pusht stats

fix image normalization: before env was in [0,1] but dataset in [0,255], and now both in [0,255]

Small fix on simxarm

Add next to obs

Add top camera to Aloha env (TODO: make it compatible with set of cameras)

Add top camera to Aloha env (TODO: make it compatible with set of cameras)
2024-03-12 10:27:48 +00:00

81 lines
2.2 KiB
Python

import abc
from collections import deque
from typing import Optional
from tensordict import TensorDict
from torchrl.envs import EnvBase
class AbstractEnv(EnvBase):
def __init__(
self,
task,
frame_skip: int = 1,
from_pixels: bool = False,
pixels_only: bool = False,
image_size=None,
seed=1337,
device="cpu",
num_prev_obs=1,
num_prev_action=0,
):
super().__init__(device=device, batch_size=[])
self.task = task
self.frame_skip = frame_skip
self.from_pixels = from_pixels
self.pixels_only = pixels_only
self.image_size = image_size
self.num_prev_obs = num_prev_obs
self.num_prev_action = num_prev_action
self._rendering_hooks = []
if pixels_only:
assert from_pixels
if from_pixels:
assert image_size
self._make_env()
self._make_spec()
self._current_seed = self.set_seed(seed)
if self.num_prev_obs > 0:
self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs)
self._prev_obs_state_queue = deque(maxlen=self.num_prev_obs)
if self.num_prev_action > 0:
raise NotImplementedError()
# self._prev_action_queue = deque(maxlen=self.num_prev_action)
def register_rendering_hook(self, func):
self._rendering_hooks.append(func)
def call_rendering_hooks(self):
for func in self._rendering_hooks:
func(self)
def reset_rendering_hooks(self):
self._rendering_hooks = []
@abc.abstractmethod
def render(self, mode="rgb_array", width=640, height=480):
raise NotImplementedError()
@abc.abstractmethod
def _reset(self, tensordict: Optional[TensorDict] = None):
raise NotImplementedError()
@abc.abstractmethod
def _step(self, tensordict: TensorDict):
raise NotImplementedError()
@abc.abstractmethod
def _make_env(self):
raise NotImplementedError()
@abc.abstractmethod
def _make_spec(self):
raise NotImplementedError()
@abc.abstractmethod
def _set_seed(self, seed: Optional[int]):
raise NotImplementedError()