Files
lerobot_piper/lerobot/scripts/train.py
2024-02-29 13:37:48 +01:00

204 lines
6.5 KiB
Python

import time
import hydra
import numpy as np
import torch
from tensordict.nn import TensorDictModule
from termcolor import colored
from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
from torchrl.data.replay_buffers import PrioritizedSliceSampler
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.envs.factory import make_env
from lerobot.common.logger import Logger
from lerobot.common.policies.factory import make_policy
from lerobot.common.utils import set_seed
from lerobot.scripts.eval import eval_policy
@hydra.main(version_base=None, config_name="default", config_path="../configs")
def train_cli(cfg: dict):
train(
cfg,
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
)
def train_notebook(out_dir=None, job_name=None, config_name="default", config_path="../configs"):
from hydra import compose, initialize
hydra.core.global_hydra.GlobalHydra.instance().clear()
initialize(config_path=config_path)
cfg = compose(config_name=config_name)
train(cfg, out_dir=out_dir, job_name=job_name)
def log_training_metrics(logger, metrics, step, online_episode_idx, start_time, is_offline):
common_metrics = {
"episode": online_episode_idx,
"step": step,
"total_time": time.time() - start_time,
"is_offline": float(is_offline),
}
metrics.update(common_metrics)
logger.log(metrics, category="train")
def eval_policy_and_log(env, td_policy, step, online_episode_idx, start_time, cfg, logger, is_offline):
common_metrics = {
"episode": online_episode_idx,
"step": step,
"total_time": time.time() - start_time,
"is_offline": float(is_offline),
}
metrics, first_video = eval_policy(
env,
td_policy,
num_episodes=cfg.eval_episodes,
return_first_video=True,
)
metrics.update(common_metrics)
logger.log(metrics, category="eval")
if cfg.wandb.enable:
eval_video = logger._wandb.Video(first_video, fps=cfg.fps, format="mp4")
logger._wandb.log({"eval_video": eval_video}, step=step)
def train(cfg: dict, out_dir=None, job_name=None):
if out_dir is None:
raise NotImplementedError()
if job_name is None:
raise NotImplementedError()
assert torch.cuda.is_available()
torch.backends.cudnn.benchmark = True
set_seed(cfg.seed)
print(colored("Work dir:", "yellow", attrs=["bold"]), out_dir)
print("make_env")
env = make_env(cfg)
print("make_policy")
policy = make_policy(cfg)
td_policy = TensorDictModule(
policy,
in_keys=["observation", "step_count"],
out_keys=["action"],
)
print("make_offline_buffer")
offline_buffer = make_offline_buffer(cfg)
# TODO(rcadene): move balanced_sampling, per_alpha, per_beta outside policy
if cfg.policy.balanced_sampling:
print("make online_buffer")
num_traj_per_batch = cfg.policy.batch_size
online_sampler = PrioritizedSliceSampler(
max_capacity=100_000,
alpha=cfg.policy.per_alpha,
beta=cfg.policy.per_beta,
num_slices=num_traj_per_batch,
strict_length=True,
)
online_buffer = TensorDictReplayBuffer(
storage=LazyMemmapStorage(100_000),
sampler=online_sampler,
)
logger = Logger(out_dir, job_name, cfg)
online_episode_idx = 0
start_time = time.time()
step = 0 # number of policy update
for offline_step in range(cfg.offline_steps):
if offline_step == 0:
print("Start offline training on a fixed dataset")
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
metrics = policy.update(offline_buffer, step)
if step % cfg.log_freq == 0:
log_training_metrics(logger, metrics, step, online_episode_idx, start_time, is_offline=False)
if step > 0 and step % cfg.eval_freq == 0:
eval_policy_and_log(
env,
td_policy,
step,
online_episode_idx,
start_time,
cfg,
logger,
is_offline=True,
)
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
print(f"Checkpoint model at step {step}")
logger.save_model(policy, identifier=step)
step += 1
demo_buffer = offline_buffer if cfg.policy.balanced_sampling else None
for env_step in range(cfg.online_steps):
if env_step == 0:
print("Start online training by interacting with environment")
# TODO: use SyncDataCollector for that?
# TODO: add configurable number of rollout? (default=1)
with torch.no_grad():
rollout = env.rollout(
max_steps=cfg.env.episode_length,
policy=td_policy,
auto_cast_to_device=True,
)
assert len(rollout) <= cfg.env.episode_length
rollout["episode"] = torch.tensor([online_episode_idx] * len(rollout), dtype=torch.int)
online_buffer.extend(rollout)
ep_sum_reward = rollout["next", "reward"].sum()
ep_max_reward = rollout["next", "reward"].max()
ep_success = rollout["next", "success"].any()
metrics = {
"avg_sum_reward": np.nanmean(ep_sum_reward),
"avg_max_reward": np.nanmean(ep_max_reward),
"pc_success": np.nanmean(ep_success) * 100,
}
online_episode_idx += 1
for _ in range(cfg.policy.utd):
train_metrics = policy.update(
online_buffer,
step,
demo_buffer=demo_buffer,
)
metrics.update(train_metrics)
if step % cfg.log_freq == 0:
log_training_metrics(logger, metrics, step, online_episode_idx, start_time, is_offline=False)
if step > 0 and step % cfg.eval_freq == 0:
eval_policy_and_log(
env,
td_policy,
step,
online_episode_idx,
start_time,
cfg,
logger,
is_offline=False,
)
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
print(f"Checkpoint model at step {step}")
logger.save_model(policy, identifier=step)
step += 1
if __name__ == "__main__":
train_cli()