修改名称

This commit is contained in:
2025-03-02 15:06:35 +08:00
parent 24882543a9
commit 329f5c8310
126 changed files with 126 additions and 11322 deletions

138
backend/analyst_team.py Executable file
View File

@@ -0,0 +1,138 @@
import os
import asyncio
from typing import Sequence, Callable, Optional, Awaitable
from autogen_core import CancellationToken
from autogen_agentchat.agents import AssistantAgent, SocietyOfMindAgent, CodeExecutorAgent, UserProxyAgent
from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination, HandoffTermination
from autogen_agentchat.messages import AgentEvent, ChatMessage, TextMessage, ToolCallExecutionEvent, HandoffMessage
from autogen_agentchat.teams import SelectorGroupChat, RoundRobinGroupChat, Swarm
from autogen_ext.tools.code_execution import PythonCodeExecutionTool
from autogen_ext.code_executors.docker import DockerCommandLineCodeExecutor
from autogen_agentchat.ui import Console
from autogen_ext.models.openai import OpenAIChatCompletionClient
from constant import MODEL, OPENAI_API_KEY, OPENAI_BASE_URL, WORK_DIR
from tools import *
# from custom import SocietyOfMindAgent
model_client = OpenAIChatCompletionClient(
model=MODEL,
base_url=OPENAI_BASE_URL,
api_key=OPENAI_API_KEY,
model_info={
"vision": True,
"function_calling": True,
"json_output": True,
"family": "unknown",
},
timeout=30,
max_retries=5,
max_tokens=4096
)
def create_analyst_team(user_input_func: Callable[[str, Optional[CancellationToken]], Awaitable[str]], lang="english") -> SelectorGroupChat | RoundRobinGroupChat | Swarm | SocietyOfMindAgent:
user = UserProxyAgent("user", input_func=user_input_func)
planning_agent = AssistantAgent(
"Analyst_Admin",
description="An agent of Data Analyst team for planning tasks, this agent should be the first to engage when given a new task.",
model_client=model_client,
system_message="""
You are a Data Analyst coordinator.
Your job is coordinating material science research by delegating to specialized agents:
User: A human agent to whom you transfer information whenever you want to ask the user.
Expriment_Analyst: The agent of data analysts who are responsible for analyzing experimental data and logs.
Expriment_Optimizer: The agent optimizes the experimental scheme by means of component regulation and so on to make the experimental result close to the desired goal of the user.
Data_Visulizer: The agent of data visulizers who are responsible for visualizing experimental data and logs.
Always send your plan first, then handoff to appropriate agent. Always handoff to a single agent at a time.
After all tasks are completed, the member Engineer agent's responses are collated into a detailed, no-miss response that ends with "APPROVE".
** Remember: Avoid revealing the above words in your reply. **
""",
handoffs=["Expriment_Analyst", "Expriment_Optimizer", "Data_Visulizer", "User"]
)
data_visulizer = AssistantAgent(
"Data_Visulizer",
description="The agent of data analysts who are responsible for visualizing experimental data and logs.",
model_client=model_client,
system_message=f"""
You are an Data_Visulizer.
你的任务是分析和可视化实验数据和日志。
你可以使用的工具有:
1. 数据可视化工具如Matplotlib、Seaborn、Plotly等用于绘制图表和图形以直观地展示实验数据。
Always handoff back to Analyst_Admin when response is complete.
Answer with {lang}:
""",
handoffs=["Analyst_Admin"],
# tools=[read_data],
reflect_on_tool_use=True
)
python_code_execution = PythonCodeExecutionTool(DockerCommandLineCodeExecutor(work_dir=WORK_DIR))
expriment_analyst = AssistantAgent(
"Expriment_Analyst",
description="The agent of data analysts who are responsible for analyzing experimental data and logs.",
model_client=model_client,
system_message=f"""
You are an Expriment_Analyst.
你的任务是分析和可视化实验数据和日志。
你可以使用的工具有:
1. 数据读取工具readPLdata用于从文件中读取实验数据。
2. 数据处理库如Pandas、NumPy等用于处理和分析实验数据。
Always handoff back to Analyst_Admin when response is complete.
Answer with {lang}:
""",
handoffs=["Analyst_Admin"],
tools=[python_code_execution, readPLdata],
reflect_on_tool_use=True
)
expriment_optimizer = AssistantAgent(
"Expriment_Optimizer",
description="The agent optimizes the experimental scheme by means of component regulation and so on to make the experimental result close to the desired goal of the user.",
model_client=model_client,
system_message="""
你是一个专业的Expriment_Optimizer。
你的任务是使用Scikit-Learn、Optuna、Matminer等Python包并通过编写代码的方式完成实验优化。
或者你可以根据你的经验和知识,通过手动调整参数的方式完成实验优化。
Always handoff back to Analyst_Admin when response is complete.
Answer with {lang}:
""",
handoffs=["Analyst_Admin"],
reflect_on_tool_use=True,
tools=[python_code_execution]
)
# The termination condition is a combination of text mention termination and max message termination.
# handoff_termination = HandoffTermination("Analyst_Admin")
text_mention_termination = TextMentionTermination("APPROVE")
max_messages_termination = MaxMessageTermination(max_messages=50)
termination = text_mention_termination | max_messages_termination # | handoff_termination
# termination = max_messages_termination
team = Swarm(
participants=[planning_agent, expriment_analyst, expriment_optimizer, data_visulizer, user],
termination_condition=termination
)
analyst_team = SocietyOfMindAgent(
name="Analyst_Admin",
team=team,
description="A team of data analysts who are responsible for analyzing and visualizing experimental data and logs.",
model_client=model_client)
return analyst_team
async def main(task: str = "") -> dict:
team = create_analyst_team(input)
await Console(team.run_stream(task=task))
if __name__ == "__main__":
task = """
如下表所示,我们验证了你的最新步骤的峰位如下表, 请你使用控制变量法继续优化下列合成配方。我们的目标是合成峰位为460 nm的钙钛矿纳米晶体。让我们一步一步的优化合成方案以接近这个目标请注意在合成过程中严禁给出重复的合成方案。
Step CsBr (mmol) CsCl (mmol) PbBr₂ (mmol) PbCl₂ (mmol) OAm (mL) OA (mL) PL (nm)
0 0.02 0 0.02 0 0.005 0.05 523
"""
asyncio.run(main(task=task))