274 lines
10 KiB
Python
Executable File
274 lines
10 KiB
Python
Executable File
import dataclasses
|
|
import functools
|
|
import logging
|
|
import platform
|
|
from typing import Any
|
|
|
|
import etils.epath as epath
|
|
import flax.nnx as nnx
|
|
from flax.training import common_utils
|
|
import flax.traverse_util as traverse_util
|
|
import jax
|
|
import jax.experimental
|
|
import jax.numpy as jnp
|
|
import optax
|
|
import tqdm_loggable.auto as tqdm
|
|
import wandb
|
|
|
|
import openpi.models.model as _model
|
|
import openpi.shared.array_typing as at
|
|
import openpi.shared.nnx_utils as nnx_utils
|
|
import openpi.training.checkpoints as _checkpoints
|
|
import openpi.training.config as _config
|
|
import openpi.training.data_loader as _data_loader
|
|
import openpi.training.optimizer as _optimizer
|
|
import openpi.training.sharding as sharding
|
|
import openpi.training.utils as training_utils
|
|
import openpi.training.weight_loaders as _weight_loaders
|
|
|
|
|
|
def init_logging():
|
|
"""Custom logging format for better readability."""
|
|
level_mapping = {"DEBUG": "D", "INFO": "I", "WARNING": "W", "ERROR": "E", "CRITICAL": "C"}
|
|
|
|
class CustomFormatter(logging.Formatter):
|
|
def format(self, record):
|
|
record.levelname = level_mapping.get(record.levelname, record.levelname)
|
|
return super().format(record)
|
|
|
|
formatter = CustomFormatter(
|
|
fmt="%(asctime)s.%(msecs)03d [%(levelname)s] %(message)-80s (%(process)d:%(filename)s:%(lineno)s)",
|
|
datefmt="%H:%M:%S",
|
|
)
|
|
|
|
logger = logging.getLogger()
|
|
logger.setLevel(logging.INFO)
|
|
logger.handlers[0].setFormatter(formatter)
|
|
|
|
|
|
def init_wandb(config: _config.TrainConfig, *, resuming: bool, log_code: bool = False, enabled: bool = True):
|
|
if not enabled:
|
|
wandb.init(mode="disabled")
|
|
return
|
|
|
|
ckpt_dir = config.checkpoint_dir
|
|
if not ckpt_dir.exists():
|
|
raise FileNotFoundError(f"Checkpoint directory {ckpt_dir} does not exist.")
|
|
if resuming:
|
|
run_id = (ckpt_dir / "wandb_id.txt").read_text().strip()
|
|
wandb.init(id=run_id, resume="must", project=config.project_name)
|
|
else:
|
|
wandb.init(
|
|
name=config.exp_name,
|
|
config=dataclasses.asdict(config),
|
|
project=config.project_name,
|
|
)
|
|
(ckpt_dir / "wandb_id.txt").write_text(wandb.run.id)
|
|
|
|
if log_code:
|
|
wandb.run.log_code(epath.Path(__file__).parent.parent)
|
|
|
|
|
|
def _load_weights_and_validate(loader: _weight_loaders.WeightLoader, params_shape: at.Params) -> at.Params:
|
|
"""Loads and validates the weights. Returns a loaded subset of the weights."""
|
|
loaded_params = loader.load(params_shape)
|
|
at.check_pytree_equality(expected=params_shape, got=loaded_params, check_shapes=True, check_dtypes=True)
|
|
|
|
# Remove jax.ShapeDtypeStruct from the loaded params. This makes sure that only the loaded params are returned.
|
|
return traverse_util.unflatten_dict(
|
|
{k: v for k, v in traverse_util.flatten_dict(loaded_params).items() if not isinstance(v, jax.ShapeDtypeStruct)}
|
|
)
|
|
|
|
|
|
@at.typecheck
|
|
def init_train_state(
|
|
config: _config.TrainConfig, init_rng: at.KeyArrayLike, mesh: jax.sharding.Mesh, *, resume: bool
|
|
) -> tuple[training_utils.TrainState, Any]:
|
|
tx = _optimizer.create_optimizer(config.optimizer, config.lr_schedule, weight_decay_mask=None)
|
|
|
|
def init(rng: at.KeyArrayLike, partial_params: at.Params | None = None) -> training_utils.TrainState:
|
|
rng, model_rng = jax.random.split(rng)
|
|
# initialize the model (and its parameters).
|
|
model = config.model.create(model_rng)
|
|
|
|
# Merge the partial params into the model.
|
|
if partial_params is not None:
|
|
graphdef, state = nnx.split(model)
|
|
# This will produce an error if the partial params are not a subset of the state.
|
|
state.replace_by_pure_dict(partial_params)
|
|
model = nnx.merge(graphdef, state)
|
|
|
|
params = nnx.state(model)
|
|
# Convert frozen params to bfloat16.
|
|
params = nnx_utils.state_map(params, config.freeze_filter, lambda p: p.replace(p.value.astype(jnp.bfloat16)))
|
|
|
|
return training_utils.TrainState(
|
|
step=0,
|
|
params=params,
|
|
model_def=nnx.graphdef(model),
|
|
tx=tx,
|
|
opt_state=tx.init(params.filter(config.trainable_filter)),
|
|
ema_decay=config.ema_decay,
|
|
ema_params=None if config.ema_decay is None else params,
|
|
)
|
|
|
|
train_state_shape = jax.eval_shape(init, init_rng)
|
|
state_sharding = sharding.fsdp_sharding(train_state_shape, mesh, log=True)
|
|
|
|
if resume:
|
|
return train_state_shape, state_sharding
|
|
|
|
partial_params = _load_weights_and_validate(config.weight_loader, train_state_shape.params.to_pure_dict())
|
|
replicated_sharding = jax.sharding.NamedSharding(mesh, jax.sharding.PartitionSpec())
|
|
|
|
# Initialize the train state and mix in the partial params.
|
|
train_state = jax.jit(
|
|
init,
|
|
donate_argnums=(1,), # donate the partial params buffer.
|
|
in_shardings=replicated_sharding,
|
|
out_shardings=state_sharding,
|
|
)(init_rng, partial_params)
|
|
|
|
return train_state, state_sharding
|
|
|
|
|
|
@at.typecheck
|
|
def train_step(
|
|
config: _config.TrainConfig,
|
|
rng: at.KeyArrayLike,
|
|
state: training_utils.TrainState,
|
|
batch: tuple[_model.Observation, _model.Actions],
|
|
) -> tuple[training_utils.TrainState, dict[str, at.Array]]:
|
|
model = nnx.merge(state.model_def, state.params)
|
|
model.train()
|
|
|
|
@at.typecheck
|
|
def loss_fn(
|
|
model: _model.BaseModel, rng: at.KeyArrayLike, observation: _model.Observation, actions: _model.Actions
|
|
):
|
|
chunked_loss = model.compute_loss(rng, observation, actions, train=True)
|
|
return jnp.mean(chunked_loss)
|
|
|
|
train_rng = jax.random.fold_in(rng, state.step)
|
|
observation, actions = batch
|
|
|
|
# Filter out frozen params.
|
|
diff_state = nnx.DiffState(0, config.trainable_filter)
|
|
loss, grads = nnx.value_and_grad(loss_fn, argnums=diff_state)(model, train_rng, observation, actions)
|
|
|
|
params = state.params.filter(config.trainable_filter)
|
|
updates, new_opt_state = state.tx.update(grads, state.opt_state, params)
|
|
new_params = optax.apply_updates(params, updates)
|
|
|
|
# Update the model in place and return the new full state.
|
|
nnx.update(model, new_params)
|
|
new_params = nnx.state(model)
|
|
|
|
new_state = dataclasses.replace(state, step=state.step + 1, params=new_params, opt_state=new_opt_state)
|
|
if state.ema_decay is not None:
|
|
new_state = dataclasses.replace(
|
|
new_state,
|
|
ema_params=jax.tree.map(
|
|
lambda old, new: state.ema_decay * old + (1 - state.ema_decay) * new, state.ema_params, new_params
|
|
),
|
|
)
|
|
|
|
# Filter out params that aren't kernels.
|
|
kernel_params = nnx.state(
|
|
model,
|
|
nnx.All(
|
|
nnx.Param,
|
|
nnx.Not(nnx_utils.PathRegex(".*/(bias|scale|pos_embedding|input_embedding)")),
|
|
lambda _, x: x.value.ndim > 1,
|
|
),
|
|
)
|
|
info = {
|
|
"loss": loss,
|
|
"grad_norm": optax.global_norm(grads),
|
|
"param_norm": optax.global_norm(kernel_params),
|
|
}
|
|
return new_state, info
|
|
|
|
|
|
def main(config: _config.TrainConfig):
|
|
init_logging()
|
|
logging.info(f"Running on: {platform.node()}")
|
|
|
|
if config.batch_size % jax.device_count() != 0:
|
|
raise ValueError(
|
|
f"Batch size {config.batch_size} must be divisible by the number of devices {jax.device_count()}."
|
|
)
|
|
|
|
jax.config.update("jax_compilation_cache_dir", str(epath.Path("~/.cache/jax").expanduser()))
|
|
|
|
rng = jax.random.key(config.seed)
|
|
train_rng, init_rng = jax.random.split(rng)
|
|
|
|
mesh = sharding.make_mesh(config.fsdp_devices)
|
|
data_sharding = jax.sharding.NamedSharding(mesh, jax.sharding.PartitionSpec(sharding.DATA_AXIS))
|
|
replicated_sharding = jax.sharding.NamedSharding(mesh, jax.sharding.PartitionSpec())
|
|
|
|
checkpoint_manager, resuming = _checkpoints.initialize_checkpoint_dir(
|
|
config.checkpoint_dir,
|
|
keep_period=config.keep_period,
|
|
overwrite=config.overwrite,
|
|
resume=config.resume,
|
|
)
|
|
init_wandb(config, resuming=resuming, enabled=config.wandb_enabled)
|
|
|
|
data_loader = _data_loader.create_data_loader(
|
|
config,
|
|
sharding=data_sharding,
|
|
num_workers=config.num_workers,
|
|
shuffle=True,
|
|
)
|
|
data_iter = iter(data_loader)
|
|
batch = next(data_iter)
|
|
logging.info(f"Initialized data loader:\n{training_utils.array_tree_to_info(batch)}")
|
|
|
|
train_state, train_state_sharding = init_train_state(config, init_rng, mesh, resume=resuming)
|
|
jax.block_until_ready(train_state)
|
|
logging.info(f"Initialized train state:\n{training_utils.array_tree_to_info(train_state.params)}")
|
|
|
|
if resuming:
|
|
train_state = _checkpoints.restore_state(checkpoint_manager, train_state, data_loader)
|
|
|
|
ptrain_step = jax.jit(
|
|
functools.partial(train_step, config),
|
|
in_shardings=(replicated_sharding, train_state_sharding, data_sharding),
|
|
out_shardings=(train_state_sharding, replicated_sharding),
|
|
donate_argnums=(1,),
|
|
)
|
|
|
|
start_step = int(train_state.step)
|
|
pbar = tqdm.tqdm(
|
|
range(start_step, config.num_train_steps),
|
|
initial=start_step,
|
|
total=config.num_train_steps,
|
|
dynamic_ncols=True,
|
|
)
|
|
|
|
infos = []
|
|
for step in pbar:
|
|
with sharding.set_mesh(mesh):
|
|
train_state, info = ptrain_step(train_rng, train_state, batch)
|
|
infos.append(info)
|
|
if step % config.log_interval == 0:
|
|
stacked_infos = common_utils.stack_forest(infos)
|
|
reduced_info = jax.device_get(jax.tree.map(jnp.mean, stacked_infos))
|
|
info_str = ", ".join(f"{k}={v:.4f}" for k, v in reduced_info.items())
|
|
pbar.write(f"Step {step}: {info_str}")
|
|
wandb.log(reduced_info, step=step)
|
|
infos = []
|
|
batch = next(data_iter)
|
|
|
|
if (step % config.save_interval == 0 and step > start_step) or step == config.num_train_steps - 1:
|
|
_checkpoints.save_state(checkpoint_manager, train_state, data_loader, step)
|
|
|
|
logging.info("Waiting for checkpoint manager to finish")
|
|
checkpoint_manager.wait_until_finished()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(_config.cli())
|