This commit is contained in:
lzy
2025-05-28 15:57:05 +08:00
7 changed files with 646233 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
MatBench/layer3/articles_fsy
*.zip

99
layer3/IsMaterialSci.py Normal file
View File

@@ -0,0 +1,99 @@
# 筛除综述类论文
import json
import time
import threading
import queue
from concurrent.futures import ThreadPoolExecutor
from openai import OpenAI
result_lock = threading.Lock()
api_semaphore = threading.Semaphore(5)
material_items = []
error_items = []
client = OpenAI(
api_key="sk-oYh3Xrhg8oDY2gW02c966f31C84449Ad86F9Cd9dF6E64a8d",
base_url="https://vip.apiyi.com/v1"
)
def load_qa_data(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def classify_qa_type(abstract,title):
prompt = f"""
This is a categorization task. Please analyze the title and abstract of the article entered to determine if it is a review paper or report. Strictly return the number 1 if the title and abstract meet the requirements for a review paper or report, or 0 if they do not meet the requirements for a review paper or report. do not provide any other explanation or output, just return the number 1 or 0.
Article Title:
{title}
Abstract:
{abstract}
"""
with api_semaphore:
try:
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": prompt}
],
stream=False
)
result = response.choices[0].message.content.strip().lower()
print(result)
return result
except Exception as e:
print(f"API调用错误: {e}")
return "2"
def process_item(item, index, total):
print(f"处理第 {index+1}/{total} 条数据...")
abstract = item["Abstract"]
# choices = item["choices"]["text"]
# choices = item["distractor3"] +','+ item["distractor2"] + ',' + item["distractor1"] +','+item["correct_answer"]
title = item["Article Title"]
label = classify_qa_type(abstract,title)
with result_lock:
if "0" in label:
material_items.append(item)
elif "2" in label:
item["error"] = "yes"
error_items.append(item)
def save_processed_data(data, output_file):
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False, indent=2)
def main():
input_file = "/home/ubuntu/50T/fsy/top_cited_papers_2015_2024.json"
output_file = "/home/ubuntu/50T/fsy/top_cited_paper_mat.json"
error_file = "/home/ubuntu/50T/fsy/paper-error.json"
data = load_qa_data(input_file)
total = len(data)
with ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for i, item in enumerate(data):
future = executor.submit(process_item, item, i, total)
futures.append(future)
if (i+1) % 10 == 0:
time.sleep(1)
for future in futures:
future.result()
save_processed_data(material_items, output_file)
print(f"处理完成,材料科学相关条目已保存到 {output_file}")
if error_items:
save_processed_data(error_items, error_file)
print(f"处理出错的条目已保存到 {error_file}")
if __name__ == "__main__":
main()

547824
layer3/paper-mat.json Normal file

File diff suppressed because it is too large Load Diff

106
layer3/paper-mat.py Normal file
View File

@@ -0,0 +1,106 @@
# Publication year range: 2015 to 2024
# Paper allocation per year: {2015: 80, 2016: 80, 2017: 80, 2018: 80, 2019: 80, 2020: 80, 2021: 80, 2022: 80, 2023: 80, 2024: 80}
# Selected 736 papers in total
# Saved selected papers to /home/ubuntu/50T/fsy/top_cited_papers_2015_2024.json
# Selected papers per year:
# 2015: 80
# 2016: 80
# 2017: 80
# 2018: 80
# 2019: 80
# 2020: 80
# 2021: 80
# 2022: 80
# 2023: 80
# 2024: 16
# 挑选高引论文
import json
import os
from collections import defaultdict
import pandas as pd
from tqdm import tqdm
def process_json_file(input_file, output_file):
print(f"Reading JSON file: {input_file}")
# 读取JSON文件
with open(input_file, 'r', encoding='utf-8') as f:
data = json.load(f)
print(f"Loaded {len(data)} records from JSON array")
# 统计发表年份范围
min_year = float('inf')
max_year = float('-inf')
# 5-2024年每年的论文按引用量排序
yearly_papers = defaultdict(list)
for paper in tqdm(data, desc="Processing papers"):
pub_year = paper.get("Publication Year")
if pub_year is None:
continue
try:
year = int(pub_year)
min_year = min(min_year, year)
max_year = max(max_year, year)
# 只关注2015-2024年间的论文
if 2015 <= year <= 2024:
# 获取引用量
citations = paper.get("Times Cited, All Databases")
if citations is None:
citations = paper.get("Times Cited, WoS Core")
yearly_papers[year].append((citations, paper))
except (ValueError, TypeError):
# 如果年份无法转换为整数,跳过
pass
print(f"Publication year range: {min_year} to {max_year}")
# 计算每年应该选择的论文数量
total_papers = 800
years = list(range(2015, 2025)) # 2015 到 2024
papers_per_year = total_papers // len(years)
remainder = total_papers % len(years)
# 分配每年的论文数量
allocation = {year: papers_per_year for year in years}
for year in years[:remainder]:
allocation[year] += 1
print(f"Paper allocation per year: {allocation}")
# 选择每年引用量最高的论文
selected_papers = []
for year in years:
# 按引用量排序
yearly_papers[year].sort(key=lambda x: x[0], reverse=True)
# 选择指定数量的论文
top_papers = yearly_papers[year][:allocation[year]]
selected_papers.extend([paper for _, paper in top_papers])
print(f"Selected {len(selected_papers)} papers in total")
# 保存到新的JSON文件
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(selected_papers, f, ensure_ascii=False, indent=2)
print(f"Saved selected papers to {output_file}")
# 输出每年选择的论文数量统计
selected_count = {year: 0 for year in years}
for paper in selected_papers:
year = int(paper["Publication Year"])
selected_count[year] += 1
print("Selected papers per year:")
for year in years:
print(f"{year}: {selected_count[year]}")
if __name__ == "__main__":
input_file = "/home/ubuntu/50T/fsy/paper-mat.json" # 替换为你的输入文件名
output_file = "/home/ubuntu/50T/fsy/top_cited_papers_2015_2024.json"
process_json_file(input_file, output_file)

BIN
layer3/paper.xls Normal file

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff