Implement SO-100 leader calibration

This commit is contained in:
Simon Alibert
2025-03-31 18:16:42 +02:00
parent 8cc0232e73
commit 201311503f
2 changed files with 66 additions and 54 deletions

View File

@@ -14,19 +14,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import time
import numpy as np
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorNormMode
from lerobot.common.motors.calibration import find_min_max, find_offset, set_calibration
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.feetech import (
FeetechMotorsBus,
OperatingMode,
TorqueMode,
)
from lerobot.common.motors.feetech.feetech import TorqueMode
from ..teleoperator import Teleoperator
from .configuration_so100 import SO100TeleopConfig
@@ -71,19 +68,6 @@ class SO100Teleop(Teleoperator):
def feedback_feature(self) -> dict:
return {}
def configure(self) -> None:
if not self.calibration_fpath.exists():
print("Calibration file not found. Running calibration.")
self.calibrate()
else:
print("Calibration file found. Loading calibration data.")
set_calibration(self.arm, self.calibration_fpath)
# We assume that at connection time, arm is in a rest position,
# and torque can be safely disabled to run calibration.
for name in self.arm.names:
self.arm.write("Torque_Enable", name, TorqueMode.DISABLED.value)
@property
def is_connected(self) -> bool:
return self.arm.is_connected
@@ -96,46 +80,53 @@ class SO100Teleop(Teleoperator):
logging.info("Connecting arm.")
self.arm.connect()
if not self.is_calibrated:
self.calibrate()
self.configure()
# Check arm can be read
self.arm.sync_read("Present_Position")
def calibrate(self) -> None:
print(f"\nRunning calibration of {self.name} teleop")
def configure(self) -> None:
# We assume that at connection time, arm is in a rest position,
# and torque can be safely disabled to run calibration.
for name in self.arm.names:
self.arm.write("Torque_Enable", name, TorqueMode.DISABLED.value)
offsets = find_offset(self.arm)
min_max = find_min_max(self.arm)
@property
def is_calibrated(self) -> bool:
motors_calibration = self.arm.get_calibration()
return motors_calibration == self.calibration
calibration = {}
def calibrate(self) -> None:
print(f"\nRunning calibration of {self.id} SO-100 teleop")
for name in self.arm.names:
motor_id = self.arm.motors[name].id
calibration[str(motor_id)] = {
"name": name,
"homing_offset": offsets.get(name, 0),
"drive_mode": 0,
"min": min_max[name]["min"],
"max": min_max[name]["max"],
}
self.arm.write("Torque_Enable", name, TorqueMode.DISABLED.value)
self.arm.write("Operating_Mode", name, OperatingMode.POSITION.value)
with open(self.calibration_fpath, "w") as f:
json.dump(calibration, f, indent=4)
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.arm.set_half_turn_homings()
print(
"Move all joints except 'wrist_roll' (id=5) sequentially through their entire ranges of motion."
)
print("Recording positions. Press ENTER to stop...")
auto_range_motors = [name for name in self.arm.names if name != "wrist_roll"]
ranges = self.arm.register_ranges_of_motion(auto_range_motors)
ranges["wrist_roll"] = {"min": 0, "max": 4095}
self.calibration = {}
for name, motor in self.arm.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=0,
homing_offset=homing_offsets[name],
range_min=ranges[name]["min"],
range_max=ranges[name]["max"],
)
self._save_calibration()
print("Calibration saved to", self.calibration_fpath)
def set_calibration(self) -> None:
"""After calibration all motors function in human interpretable ranges.
Rotations are expressed in degrees in nominal range of [-180, 180],
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
"""
if not self.calibration_fpath.exists():
logging.error("Calibration file not found. Please run calibration first")
raise FileNotFoundError(self.calibration_fpath)
self.arm.set_calibration(self.calibration_fpath)
def get_action(self) -> np.ndarray:
def get_action(self) -> dict[str, float]:
"""The returned action does not have a batch dimension."""
# Read arm position
before_read_t = time.perf_counter()
@@ -144,7 +135,7 @@ class SO100Teleop(Teleoperator):
return action
def send_feedback(self, feedback: np.ndarray) -> None:
def send_feedback(self, feedback: dict[str, float]) -> None:
# TODO(rcadene, aliberts): Implement force feedback
pass

View File

@@ -1,7 +1,11 @@
import abc
from pathlib import Path
from typing import Any
import draccus
from lerobot.common.constants import HF_LEROBOT_CALIBRATION, TELEOPERATORS
from lerobot.common.motors.motors_bus import MotorCalibration
from .config import TeleoperatorConfig
@@ -22,6 +26,9 @@ class Teleoperator(abc.ABC):
)
self.calibration_dir.mkdir(parents=True, exist_ok=True)
self.calibration_fpath = self.calibration_dir / f"{self.id}.json"
self.calibration: dict[str, MotorCalibration] = {}
if self.calibration_fpath.is_file():
self._load_calibration()
@abc.abstractproperty
def action_feature(self) -> dict:
@@ -40,11 +47,29 @@ class Teleoperator(abc.ABC):
"""Connects to the teleoperator."""
pass
@abc.abstractmethod
def configure(self) -> None:
pass
@abc.abstractproperty
def is_calibrated(self) -> bool:
pass
@abc.abstractmethod
def calibrate(self) -> None:
"""Calibrates the teleoperator."""
pass
def _load_calibration(self, fpath: Path | None = None) -> None:
fpath = self.calibration_fpath if fpath is None else fpath
with open(fpath) as f, draccus.config_type("json"):
self.calibration = draccus.load(dict[str, MotorCalibration], f)
def _save_calibration(self, fpath: Path | None = None) -> None:
fpath = self.calibration_fpath if fpath is None else fpath
with open(fpath, "w") as f, draccus.config_type("json"):
draccus.dump(self.calibration, f, indent=4)
@abc.abstractmethod
def get_action(self) -> dict[str, Any]:
"""Gets the action to send to a teleoperator."""
@@ -59,7 +84,3 @@ class Teleoperator(abc.ABC):
def disconnect(self) -> None:
"""Disconnects from the teleoperator."""
pass
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()