WIP UploadDataset

This commit is contained in:
Remi Cadene
2025-03-01 19:07:22 +00:00
parent 3daab2acbb
commit 3666ac9346
2 changed files with 247 additions and 52 deletions

View File

@@ -1,21 +1,35 @@
import datetime as dt
import logging
import os
import random
import time
from pathlib import Path
from datatrove.executor import LocalPipelineExecutor
from datatrove.executor.slurm import SlurmPipelineExecutor
from datatrove.pipeline.base import PipelineStep
from huggingface_hub import CommitOperationAdd, HfApi, create_commit, preupload_lfs_files
from huggingface_hub.constants import REPOCARD_NAME
from huggingface_hub.utils import HfHubHTTPError
from lerobot.common.datasets.aggregate import aggregate_datasets
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
from lerobot.common.datasets.utils import create_lerobot_dataset_card
BASE_DELAY = 0.1
MAX_RETRIES = 12
class PortOpenXDataset(PipelineStep):
def __init__(
self,
raw_dir: Path,
raw_dir: Path | str,
repo_id: str = None,
image_writer_process: int = 0,
image_writer_threads: int = 8,
):
super().__init__()
self.raw_dir = raw_dir
self.raw_dir = Path(raw_dir)
self.repo_id = repo_id
self.image_writer_process = image_writer_process
self.image_writer_threads = image_writer_threads
@@ -45,8 +59,215 @@ class PortOpenXDataset(PipelineStep):
class AggregateDatasets(PipelineStep):
def __init__(
self,
repo_ids: list[str],
aggregated_repo_id: str,
):
super().__init__()
self.repo_ids = repo_ids
self.aggregated_repo_id = aggregated_repo_id
def run(self, data=None, rank: int = 0, world_size: int = 1):
print("aggregation")
aggregate_datasets(self.repo_ids, self.aggregated_repo_id)
class UploadDataset(PipelineStep):
def __init__(
self,
repo_id: str,
branch: str | None = None,
tags: list | None = None,
license: str | None = "apache-2.0",
private: bool = False,
**card_kwargs,
):
super().__init__()
self.repo_id = repo_id
self.branch = branch
self.tags = tags
self.license = license
self.private = private
self.card_kwargs = card_kwargs
if os.environ.get("HF_HUB_ENABLE_HF_TRANSFER", "0") != "1":
logging.warning(
'HF_HUB_ENABLE_HF_TRANSFER is not set to "1". Install hf_transfer and set the env '
"variable for faster uploads:\npip install hf-transfer\nexport HF_HUB_ENABLE_HF_TRANSFER=1"
)
self._repo_init = False
def _create_repo(self, hub_api):
hub_api.create_repo(
repo_id=self.repo_id,
private=self.private,
repo_type="dataset",
exist_ok=True,
)
if self.branch:
hub_api.create_branch(
repo_id=self.repo_id,
branch=self.branch,
revision=self.revision,
repo_type="dataset",
exist_ok=True,
)
if not hub_api.file_exists(self.repo_id, REPOCARD_NAME, repo_type="dataset", revision=self.branch):
card = create_lerobot_dataset_card(
tags=self.tags, dataset_info=self.meta.info, license=license, **self.card_kwargs
)
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset", revision=self.branch)
def run(self, data=None, rank: int = 0, world_size: int = 1):
from lerobot.common.utils.utils import init_logging
init_logging()
meta = LeRobotDatasetMetadata(self.repo_id)
# TODO: list files, shard files, upload meta data for rank=0
filenames = []
raise NotImplementedError()
hub_api = HfApi()
if not self._repo_init:
self._create_repo(hub_api)
self._repo_init = True
additions = [
CommitOperationAdd(path_in_repo=filename, path_or_fileobj=meta.root / filename)
for filename in filenames
]
logging.info(f"Uploading {','.join(filenames)} to the hub...")
preupload_lfs_files(
repo_id=self.repo_id, repo_type="dataset", additions=additions, revision=self.revision
)
logging.info(f"Upload of {','.join(filenames)} to the hub complete!")
# if self.cleanup:
# for filename in filenames:
# self.local_working_dir.rm(filename)
self.operations.extend(additions)
def close(self, rank: int = 0):
filelist = list(self.output_mg.get_open_files().keys())
super().close()
if filelist:
logging.info(f"Starting upload of {len(filelist)} files to {self.dataset}")
self.upload_files(*filelist)
retries = 0
while True:
try:
create_commit(
self.repo_id,
repo_type="dataset",
operations=self.operations,
commit_message=f"DataTrove upload ({len(self.operations)} files)",
revision=self.revision,
)
break
except HfHubHTTPError as e:
if "A commit has happened since" in e.server_message:
if retries >= MAX_RETRIES:
logging.error(f"Failed to create commit after {MAX_RETRIES=}. Giving up.")
raise e
logging.info("Commit creation race condition issue. Waiting...")
time.sleep(BASE_DELAY * 2**retries + random.uniform(0, 2))
retries += 1
else:
raise e
def make_port_executor(raw_dir, repo_id, port_job_name, port_log_dir, slurm=True):
kwargs = {
"pipeline": [
PortOpenXDataset(raw_dir, repo_id),
],
"logging_dir": str(port_log_dir),
}
if slurm:
kwargs.update(
{
"job_name": port_job_name,
"tasks": 2048,
"workers": 20,
"time": "08:00:00",
"partition": "hopper-cpu",
"cpus_per_task": 24,
"mem_per_cpu_gb": 2,
"max_array_launch_parallel": True,
}
)
executor = SlurmPipelineExecutor(**kwargs)
else:
kwargs.update(
{
"tasks": 1,
"workers": 1,
}
)
executor = LocalPipelineExecutor(**kwargs)
return executor
def make_aggregate_executor(
repo_ids, aggr_repo_id, port_job_name, aggregate_log_dir, depends=None, slurm=True
):
kwargs = {
"pipeline": [
AggregateDatasets(repo_ids, aggr_repo_id),
],
"logging_dir": str(aggregate_log_dir),
"tasks": 1,
"workers": 1,
}
if depends:
kwargs["depends"] = depends
if slurm:
kwargs.update(
{
"job_name": port_job_name,
"time": "08:00:00",
"partition": "hopper-cpu",
}
)
executor = SlurmPipelineExecutor(**kwargs)
else:
executor = LocalPipelineExecutor(**kwargs)
return executor
def make_upload_executor(repo_id, upload_job_name, upload_log_dir, depends=None, slurm=True):
kwargs = {
"pipeline": [
UploadDataset(repo_id),
],
"logging_dir": str(upload_log_dir),
"tasks": 1,
"workers": 1,
}
if depends:
kwargs["depends"] = depends
if slurm:
kwargs.update(
{
"job_name": upload_job_name,
"time": "08:00:00",
"partition": "hopper-cpu",
}
)
executor = SlurmPipelineExecutor(**kwargs)
else:
executor = LocalPipelineExecutor(**kwargs)
return executor
def main(slurm=True):
@@ -54,64 +275,35 @@ def main(slurm=True):
# for dir_ in Path("/fsx/remi_cadene/.cache/huggingface/lerobot/cadene").glob("droid_world*"):
# shutil.rmtree(dir_)
world = 2048
raw_dir = "/fsx/mustafa_shukor/droid"
port_job_name = "port_openx_droid"
aggregate_job_name = "aggregate_openx_droid"
upload_job_name = "upload_openx_droid"
logs_dir = Path("/fsx/remi_cadene/logs")
repo_id = "cadene/droid"
now = dt.datetime.now()
datetime = f"{now:%Y-%m-%d}_{now:%H-%M-%S}"
# datetime = "2025-02-22_11-17-00"
port_log_dir = logs_dir / f"{datetime}_{port_job_name}"
aggregate_log_dir = logs_dir / f"{datetime}_{aggregate_job_name}"
upload_log_dir = logs_dir / f"{datetime}_{upload_job_name}"
if slurm:
executor_class = SlurmPipelineExecutor
dist_extra_kwargs = {
"job_name": port_job_name,
"tasks": 2048,
# "workers": 20, # 8 * 16,
"workers": 20, # 8 * 16,
"time": "08:00:00",
"partition": "hopper-cpu",
"cpus_per_task": 24,
"mem_per_cpu_gb": 2,
"max_array_launch_parallel": True,
}
else:
executor_class = LocalPipelineExecutor
dist_extra_kwargs = {
"tasks": 1,
"workers": 1,
}
port_executor = executor_class(
pipeline=[
PortOpenXDataset(raw_dir=Path("/fsx/mustafa_shukor/droid"), repo_id=f"cadene/droid_{datetime}"),
],
logging_dir=str(port_log_dir),
**dist_extra_kwargs,
)
port_executor = make_port_executor(raw_dir, repo_id, port_job_name, port_log_dir, slurm)
port_executor.run()
# if slurm:
# merge_extra_kwargs = {}
# else:
# merge_extra_kwargs = {
# "job_name": "aggregate",
# "time": "00:01:00",
# "partition": "hopper-cpu",
# }
repo_ids = [f"{repo_id}_{datetime}_world_{world}_rank_{rank}" for rank in range(world)]
aggregate_executor = make_aggregate_executor(
repo_ids, repo_id, aggregate_job_name, aggregate_log_dir, port_executor, slurm
)
aggregate_executor.run()
# merge_executor = executor_class(
# depends=dist_executor,
# pipeline=[
# Aggregate(),
# ],
# logging_dir=f"/fsx/remi_cadene/logs/openx_rlds_merge",
# tasks=1,
# workers=1,
# **merge_extra_kwargs,
# )
# merge_executor.run()
upload_executor = make_upload_executor(
repo_id, upload_job_name, upload_log_dir, aggregate_executor, slurm
)
upload_executor.run()
if __name__ == "__main__":

View File

@@ -40,17 +40,20 @@ def get_update_episode_and_task_func(episode_index_to_add, task_index_to_global_
return _update
def aggregate_datasets(all_metadata: list[LeRobotDatasetMetadata], repo_id: str, root=None):
def aggregate_datasets(repo_ids: list[str], aggr_repo_id: str, aggr_root=None):
logging.info("start aggregate_datasets")
all_metadata = [LeRobotDatasetMetadata(repo_id) for repo_id in repo_ids]
fps, robot_type, features = validate_all_metadata(all_metadata)
# Create resulting dataset folder
aggr_meta = LeRobotDatasetMetadata.create(
repo_id=repo_id,
repo_id=aggr_repo_id,
fps=fps,
robot_type=robot_type,
features=features,
root=root,
root=aggr_root,
)
logging.info("find all tasks")