forked from tangger/lerobot
training the model
This commit is contained in:
58
examples/train_smolvla.sh
Normal file
58
examples/train_smolvla.sh
Normal file
@@ -0,0 +1,58 @@
|
||||
#!/bin/bash
|
||||
|
||||
|
||||
cd ~/lerobot_pi
|
||||
|
||||
source ~/miniconda3/bin/activate
|
||||
conda activate lerobot
|
||||
|
||||
|
||||
|
||||
export WORK=/home/mustafa_shukor
|
||||
# export TRANSFORMERS_CACHE=$WORK/.cache/huggingface/transformers
|
||||
# export HF_HOME=$WORK/.cache/huggingface
|
||||
# export DATA_DIR=$WORK/.cache/huggingface/datasets
|
||||
# export HF_LEROBOT_HOME=$WORK/.cache/huggingface/lerobot
|
||||
|
||||
# export HF_DATASETS_OFFLINE=1
|
||||
# export HF_HUB_OFFLINE=1
|
||||
|
||||
# export WANDB_CACHE_DIR=/lustre/fsn1/projects/rech/dyf/ugz83ue/wandb
|
||||
# export WANDB_MODE=offline
|
||||
|
||||
|
||||
## then later
|
||||
## wandb sync wandb/offline-run-*
|
||||
|
||||
|
||||
|
||||
# V3 So100
|
||||
REPO_ID=danaaubakirova/svla_so100_task1_v3
|
||||
DATASET_NAME=so100_v3_task_1
|
||||
|
||||
|
||||
POLICY=smolvla
|
||||
POLICY_NAME=smolvla
|
||||
|
||||
|
||||
|
||||
|
||||
OFFLINE_STEPS=200000
|
||||
BATCH_SIZE=64
|
||||
|
||||
|
||||
TASK_NAME=lerobot_${DATASET_NAME}_${POLICY_NAME}
|
||||
|
||||
|
||||
|
||||
|
||||
TRAIN_DIR=$WORK/logs/lerobot/$TASK_NAME
|
||||
echo $TRAIN_DIR
|
||||
|
||||
|
||||
rm -r $TRAIN_DIR
|
||||
CUDA_VISIBLE_DEVICES=2 python lerobot/scripts/train.py \
|
||||
--policy.type=$POLICY \
|
||||
--dataset.repo_id=$REPO_ID \
|
||||
--output_dir=$TRAIN_DIR
|
||||
|
||||
@@ -335,7 +335,7 @@ class SmolVLAPolicy(PreTrainedPolicy):
|
||||
loss = losses.mean()
|
||||
# For backward pass
|
||||
loss_dict["loss"] = loss
|
||||
return loss_dict
|
||||
return loss, loss_dict
|
||||
|
||||
def prepare_images(self, batch):
|
||||
"""Apply SmolVLA preprocessing to the images, like resizing to 224x224 and padding to keep aspect ratio, and
|
||||
|
||||
Reference in New Issue
Block a user