fix bug in augment_dataset_quantile_stats.py that was not detecting… (#2106)

* fix bug in `augment_dataset_quantile_stats.py` that was not detecting the image features because we were looping over hf_dataset. Now we loop over the dataset itself

* Update src/lerobot/datasets/v30/augment_dataset_quantile_stats.py

Signed-off-by: Michel Aractingi <michel.aractingi@huggingface.co>

---------

Signed-off-by: Michel Aractingi <michel.aractingi@huggingface.co>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
This commit is contained in:
Michel Aractingi
2025-10-02 18:28:44 +02:00
committed by GitHub
parent 38f6fc816b
commit 5c8dd883be

View File

@@ -40,10 +40,12 @@ from pathlib import Path
import numpy as np
import torch
from huggingface_hub import HfApi
from requests import HTTPError
from tqdm import tqdm
from lerobot.datasets.compute_stats import DEFAULT_QUANTILES, aggregate_stats, get_feature_stats
from lerobot.datasets.lerobot_dataset import LeRobotDataset
from lerobot.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
from lerobot.datasets.utils import write_stats
from lerobot.utils.utils import init_logging
@@ -85,13 +87,27 @@ def process_single_episode(dataset: LeRobotDataset, episode_idx: int) -> dict:
start_idx = dataset.meta.episodes[episode_idx]["dataset_from_index"]
end_idx = dataset.meta.episodes[episode_idx]["dataset_to_index"]
collected_data: dict[str, list] = {}
for idx in range(start_idx, end_idx):
item = dataset[idx]
for key, value in item.items():
if key not in dataset.features:
continue
if key not in collected_data:
collected_data[key] = []
collected_data[key].append(value)
ep_stats = {}
for key, data in dataset.hf_dataset[start_idx:end_idx].items():
for key, data_list in collected_data.items():
if dataset.features[key]["dtype"] == "string":
continue
data = torch.stack(data).cpu().numpy()
data = torch.stack(data_list).cpu().numpy()
if dataset.features[key]["dtype"] in ["image", "video"]:
if data.dtype == np.uint8:
data = data.astype(np.float32) / 255.0
axes_to_reduce = (0, 2, 3)
keepdims = True
else:
@@ -103,12 +119,9 @@ def process_single_episode(dataset: LeRobotDataset, episode_idx: int) -> dict:
)
if dataset.features[key]["dtype"] in ["image", "video"]:
for k, v in ep_stats[key].items():
if dataset.features[key]["dtype"] == "video":
v = v / 255.0
if k != "count":
v = np.squeeze(v, axis=0)
ep_stats[key][k] = v
ep_stats[key] = {
k: v if k == "count" else np.squeeze(v, axis=0) for k, v in ep_stats[key].items()
}
return ep_stats
@@ -121,25 +134,39 @@ def compute_quantile_stats_for_dataset(dataset: LeRobotDataset) -> dict[str, dic
Returns:
Dictionary containing aggregated statistics with quantiles
Note:
Video decoding operations are not thread-safe, so we process episodes sequentially
when video keys are present. For datasets without videos, we use parallel processing
with ThreadPoolExecutor for better performance.
"""
logging.info(f"Computing quantile statistics for dataset with {dataset.num_episodes} episodes")
episode_stats_list = []
max_workers = min(dataset.num_episodes, 16)
has_videos = len(dataset.meta.video_keys) > 0
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_episode = {
executor.submit(process_single_episode, dataset, episode_idx): episode_idx
for episode_idx in range(dataset.num_episodes)
}
if has_videos:
logging.info("Dataset contains video keys - using sequential processing for thread safety")
for episode_idx in tqdm(range(dataset.num_episodes), desc="Processing episodes"):
ep_stats = process_single_episode(dataset, episode_idx)
episode_stats_list.append(ep_stats)
else:
logging.info("Dataset has no video keys - using parallel processing for better performance")
max_workers = min(dataset.num_episodes, 16)
episode_results = {}
with tqdm(total=dataset.num_episodes, desc="Processing episodes") as pbar:
for future in concurrent.futures.as_completed(future_to_episode):
episode_idx = future_to_episode[future]
ep_stats = future.result()
episode_results[episode_idx] = ep_stats
pbar.update(1)
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_episode = {
executor.submit(process_single_episode, dataset, episode_idx): episode_idx
for episode_idx in range(dataset.num_episodes)
}
episode_results = {}
with tqdm(total=dataset.num_episodes, desc="Processing episodes") as pbar:
for future in concurrent.futures.as_completed(future_to_episode):
episode_idx = future_to_episode[future]
ep_stats = future.result()
episode_results[episode_idx] = ep_stats
pbar.update(1)
for episode_idx in range(dataset.num_episodes):
if episode_idx in episode_results:
@@ -186,6 +213,14 @@ def augment_dataset_with_quantile_stats(
logging.info("Successfully updated dataset with quantile statistics")
dataset.push_to_hub()
hub_api = HfApi()
try:
hub_api.delete_tag(repo_id, tag=CODEBASE_VERSION, repo_type="dataset")
except HTTPError as e:
logging.info(f"tag={CODEBASE_VERSION} probably doesn't exist. Skipping exception ({e})")
pass
hub_api.create_tag(repo_id, tag=CODEBASE_VERSION, revision=None, repo_type="dataset")
def main():
"""Main function to run the augmentation script."""