forked from tangger/lerobot
[Fix] Device Error on SmolVLA Multi-GPU Training (#2270)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
This commit is contained in:
@@ -485,6 +485,7 @@ class VLAFlowMatching(nn.Module):
|
||||
num_vlm_layers=self.config.num_vlm_layers,
|
||||
self_attn_every_n_layers=self.config.self_attn_every_n_layers,
|
||||
expert_width_multiplier=self.config.expert_width_multiplier,
|
||||
device=self.config.device,
|
||||
)
|
||||
self.state_proj = nn.Linear(
|
||||
self.config.max_state_dim, self.vlm_with_expert.config.text_config.hidden_size
|
||||
|
||||
@@ -70,13 +70,14 @@ class SmolVLMWithExpertModel(nn.Module):
|
||||
num_vlm_layers: int = -1,
|
||||
self_attn_every_n_layers: int = -1,
|
||||
expert_width_multiplier: float = 0.5,
|
||||
device: str = "auto",
|
||||
):
|
||||
super().__init__()
|
||||
if load_vlm_weights:
|
||||
print(f"Loading {model_id} weights ...")
|
||||
self.vlm = AutoModelForImageTextToText.from_pretrained(
|
||||
model_id,
|
||||
device_map="auto",
|
||||
device_map=device,
|
||||
torch_dtype="bfloat16",
|
||||
low_cpu_mem_usage=True,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user