forked from tangger/lerobot
Refactor LeKiwi (#1136)
Co-authored-by: Simon Alibert <simon.alibert@huggingface.co> Co-authored-by: Steven Palma <steven.palma@huggingface.co> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -16,42 +16,38 @@ import logging
|
||||
import time
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.utils import hw_to_dataset_features
|
||||
from lerobot.common.robots.lekiwi.config_lekiwi import LeKiwiClientConfig
|
||||
from lerobot.common.robots.lekiwi.lekiwi_client import OBS_STATE, LeKiwiClient
|
||||
from lerobot.common.robots.lekiwi.lekiwi_client import LeKiwiClient
|
||||
from lerobot.common.teleoperators.keyboard import KeyboardTeleop, KeyboardTeleopConfig
|
||||
from lerobot.common.teleoperators.so100 import SO100Leader, SO100LeaderConfig
|
||||
from lerobot.common.teleoperators.so100_leader import SO100Leader, SO100LeaderConfig
|
||||
|
||||
NB_CYCLES_CLIENT_CONNECTION = 250
|
||||
|
||||
|
||||
def main():
|
||||
logging.info("Configuring Teleop Devices")
|
||||
leader_arm_config = SO100LeaderConfig(port="/dev/tty.usbmodem58760434171")
|
||||
leader_arm_config = SO100LeaderConfig(port="/dev/tty.usbmodem58760433331")
|
||||
leader_arm = SO100Leader(leader_arm_config)
|
||||
|
||||
keyboard_config = KeyboardTeleopConfig()
|
||||
keyboard = KeyboardTeleop(keyboard_config)
|
||||
|
||||
logging.info("Configuring LeKiwi Client")
|
||||
robot_config = LeKiwiClientConfig(remote_ip="192.0.2.42", id="lekiwi")
|
||||
robot_config = LeKiwiClientConfig(remote_ip="172.18.134.136", id="lekiwi")
|
||||
robot = LeKiwiClient(robot_config)
|
||||
|
||||
logging.info("Creating LeRobot Dataset")
|
||||
|
||||
# The observations that we get are expected to be in body frame (x,y,theta)
|
||||
obs_dict = {f"{OBS_STATE}." + key: value for key, value in robot.state_feature.items()}
|
||||
# The actions that we send are expected to be in wheel frame (motor encoders)
|
||||
act_dict = {"action." + key: value for key, value in robot.action_feature.items()}
|
||||
action_features = hw_to_dataset_features(robot.action_features, "action")
|
||||
obs_features = hw_to_dataset_features(robot.observation_features, "observation")
|
||||
dataset_features = {**action_features, **obs_features}
|
||||
|
||||
features_dict = {
|
||||
**act_dict,
|
||||
**obs_dict,
|
||||
**robot.camera_features,
|
||||
}
|
||||
dataset = LeRobotDataset.create(
|
||||
repo_id="user/lekiwi" + str(int(time.time())),
|
||||
fps=10,
|
||||
features=features_dict,
|
||||
features=dataset_features,
|
||||
robot_type=robot.name,
|
||||
)
|
||||
|
||||
logging.info("Connecting Teleop Devices")
|
||||
@@ -76,10 +72,10 @@ def main():
|
||||
observation = robot.get_observation()
|
||||
|
||||
frame = {**action_sent, **observation}
|
||||
frame.update({"task": "Dummy Example Task Dataset"})
|
||||
task = "Dummy Example Task Dataset"
|
||||
|
||||
logging.info("Saved a frame into the dataset")
|
||||
dataset.add_frame(frame)
|
||||
dataset.add_frame(frame, task)
|
||||
i += 1
|
||||
|
||||
logging.info("Disconnecting Teleop Devices and LeKiwi Client")
|
||||
|
||||
@@ -207,6 +207,7 @@ MODEL_BAUDRATE_TABLE = {
|
||||
STS_SMS_SERIES_ENCODINGS_TABLE = {
|
||||
"Homing_Offset": 11,
|
||||
"Goal_Velocity": 15,
|
||||
"Present_Velocity": 15,
|
||||
}
|
||||
|
||||
MODEL_ENCODING_TABLE = {
|
||||
|
||||
@@ -16,9 +16,12 @@
|
||||
|
||||
import logging
|
||||
import time
|
||||
from functools import cached_property
|
||||
from itertools import chain
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
@@ -71,34 +74,35 @@ class LeKiwi(Robot):
|
||||
self.cameras = make_cameras_from_configs(config.cameras)
|
||||
|
||||
@property
|
||||
def state_feature(self) -> dict:
|
||||
state_ft = {
|
||||
"arm_shoulder_pan": {"dtype": "float32"},
|
||||
"arm_shoulder_lift": {"dtype": "float32"},
|
||||
"arm_elbow_flex": {"dtype": "float32"},
|
||||
"arm_wrist_flex": {"dtype": "float32"},
|
||||
"arm_wrist_roll": {"dtype": "float32"},
|
||||
"arm_gripper": {"dtype": "float32"},
|
||||
"base_left_wheel": {"dtype": "float32"},
|
||||
"base_right_wheel": {"dtype": "float32"},
|
||||
"base_back_wheel": {"dtype": "float32"},
|
||||
def _state_ft(self) -> dict[str, type]:
|
||||
return dict.fromkeys(
|
||||
(
|
||||
"arm_shoulder_pan.pos",
|
||||
"arm_shoulder_lift.pos",
|
||||
"arm_elbow_flex.pos",
|
||||
"arm_wrist_flex.pos",
|
||||
"arm_wrist_roll.pos",
|
||||
"arm_gripper.pos",
|
||||
"x.vel",
|
||||
"y.vel",
|
||||
"theta.vel",
|
||||
),
|
||||
float,
|
||||
)
|
||||
|
||||
@property
|
||||
def _cameras_ft(self) -> dict[str, tuple]:
|
||||
return {
|
||||
cam: (self.config.cameras[cam].height, self.config.cameras[cam].width, 3) for cam in self.cameras
|
||||
}
|
||||
return state_ft
|
||||
|
||||
@property
|
||||
def action_feature(self) -> dict:
|
||||
return self.state_feature
|
||||
@cached_property
|
||||
def observation_features(self) -> dict[str, type | tuple]:
|
||||
return {**self._state_ft, **self._cameras_ft}
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict[str, dict]:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
cam_ft[cam_key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
@cached_property
|
||||
def action_features(self) -> dict[str, type]:
|
||||
return self._state_ft
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
@@ -189,6 +193,142 @@ class LeKiwi(Robot):
|
||||
self.bus.setup_motor(motor)
|
||||
print(f"'{motor}' motor id set to {self.bus.motors[motor].id}")
|
||||
|
||||
@staticmethod
|
||||
def _degps_to_raw(degps: float) -> int:
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
speed_in_steps = degps * steps_per_deg
|
||||
speed_int = int(round(speed_in_steps))
|
||||
# Cap the value to fit within signed 16-bit range (-32768 to 32767)
|
||||
if speed_int > 0x7FFF:
|
||||
speed_int = 0x7FFF # 32767 -> maximum positive value
|
||||
elif speed_int < -0x8000:
|
||||
speed_int = -0x8000 # -32768 -> minimum negative value
|
||||
return speed_int
|
||||
|
||||
@staticmethod
|
||||
def _raw_to_degps(raw_speed: int) -> float:
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
magnitude = raw_speed
|
||||
degps = magnitude / steps_per_deg
|
||||
return degps
|
||||
|
||||
def _body_to_wheel_raw(
|
||||
self,
|
||||
x: float,
|
||||
y: float,
|
||||
theta: float,
|
||||
wheel_radius: float = 0.05,
|
||||
base_radius: float = 0.125,
|
||||
max_raw: int = 3000,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert desired body-frame velocities into wheel raw commands.
|
||||
|
||||
Parameters:
|
||||
x_cmd : Linear velocity in x (m/s).
|
||||
y_cmd : Linear velocity in y (m/s).
|
||||
theta_cmd : Rotational velocity (deg/s).
|
||||
wheel_radius: Radius of each wheel (meters).
|
||||
base_radius : Distance from the center of rotation to each wheel (meters).
|
||||
max_raw : Maximum allowed raw command (ticks) per wheel.
|
||||
|
||||
Returns:
|
||||
A dictionary with wheel raw commands:
|
||||
{"base_left_wheel": value, "base_back_wheel": value, "base_right_wheel": value}.
|
||||
|
||||
Notes:
|
||||
- Internally, the method converts theta_cmd to rad/s for the kinematics.
|
||||
- The raw command is computed from the wheels angular speed in deg/s
|
||||
using _degps_to_raw(). If any command exceeds max_raw, all commands
|
||||
are scaled down proportionally.
|
||||
"""
|
||||
# Convert rotational velocity from deg/s to rad/s.
|
||||
theta_rad = theta * (np.pi / 180.0)
|
||||
# Create the body velocity vector [x, y, theta_rad].
|
||||
velocity_vector = np.array([x, y, theta_rad])
|
||||
|
||||
# Define the wheel mounting angles with a -90° offset.
|
||||
angles = np.radians(np.array([240, 120, 0]) - 90)
|
||||
# Build the kinematic matrix: each row maps body velocities to a wheel’s linear speed.
|
||||
# The third column (base_radius) accounts for the effect of rotation.
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
||||
# Compute each wheel’s linear speed (m/s) and then its angular speed (rad/s).
|
||||
wheel_linear_speeds = m.dot(velocity_vector)
|
||||
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
|
||||
|
||||
# Convert wheel angular speeds from rad/s to deg/s.
|
||||
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
|
||||
|
||||
# Scaling
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
|
||||
max_raw_computed = max(raw_floats)
|
||||
if max_raw_computed > max_raw:
|
||||
scale = max_raw / max_raw_computed
|
||||
wheel_degps = wheel_degps * scale
|
||||
|
||||
# Convert each wheel’s angular speed (deg/s) to a raw integer.
|
||||
wheel_raw = [self._degps_to_raw(deg) for deg in wheel_degps]
|
||||
|
||||
return {
|
||||
"base_left_wheel": wheel_raw[0],
|
||||
"base_back_wheel": wheel_raw[1],
|
||||
"base_right_wheel": wheel_raw[2],
|
||||
}
|
||||
|
||||
def _wheel_raw_to_body(
|
||||
self,
|
||||
left_wheel_speed,
|
||||
back_wheel_speed,
|
||||
right_wheel_speed,
|
||||
wheel_radius: float = 0.05,
|
||||
base_radius: float = 0.125,
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Convert wheel raw command feedback back into body-frame velocities.
|
||||
|
||||
Parameters:
|
||||
wheel_raw : Vector with raw wheel commands ("base_left_wheel", "base_back_wheel", "base_right_wheel").
|
||||
wheel_radius: Radius of each wheel (meters).
|
||||
base_radius : Distance from the robot center to each wheel (meters).
|
||||
|
||||
Returns:
|
||||
A dict (x_cmd, y_cmd, theta_cmd) where:
|
||||
OBS_STATE.x_cmd : Linear velocity in x (m/s).
|
||||
OBS_STATE.y_cmd : Linear velocity in y (m/s).
|
||||
OBS_STATE.theta_cmd : Rotational velocity in deg/s.
|
||||
"""
|
||||
|
||||
# Convert each raw command back to an angular speed in deg/s.
|
||||
wheel_degps = np.array(
|
||||
[
|
||||
self._raw_to_degps(left_wheel_speed),
|
||||
self._raw_to_degps(back_wheel_speed),
|
||||
self._raw_to_degps(right_wheel_speed),
|
||||
]
|
||||
)
|
||||
|
||||
# Convert from deg/s to rad/s.
|
||||
wheel_radps = wheel_degps * (np.pi / 180.0)
|
||||
# Compute each wheel’s linear speed (m/s) from its angular speed.
|
||||
wheel_linear_speeds = wheel_radps * wheel_radius
|
||||
|
||||
# Define the wheel mounting angles with a -90° offset.
|
||||
angles = np.radians(np.array([240, 120, 0]) - 90)
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
||||
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
|
||||
m_inv = np.linalg.inv(m)
|
||||
velocity_vector = m_inv.dot(wheel_linear_speeds)
|
||||
x, y, theta_rad = velocity_vector
|
||||
theta = theta_rad * (180.0 / np.pi)
|
||||
return {
|
||||
"x.vel": x,
|
||||
"y.vel": y,
|
||||
"theta.vel": theta,
|
||||
} # m/s and deg/s
|
||||
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
@@ -196,9 +336,19 @@ class LeKiwi(Robot):
|
||||
# Read actuators position for arm and vel for base
|
||||
start = time.perf_counter()
|
||||
arm_pos = self.bus.sync_read("Present_Position", self.arm_motors)
|
||||
base_vel = self.bus.sync_read("Present_Velocity", self.base_motors)
|
||||
obs_dict = {**arm_pos, **base_vel}
|
||||
obs_dict = {f"{OBS_STATE}." + key: value for key, value in obs_dict.items()}
|
||||
base_wheel_vel = self.bus.sync_read("Present_Velocity", self.base_motors)
|
||||
|
||||
base_vel = self._wheel_raw_to_body(
|
||||
base_wheel_vel["base_left_wheel"],
|
||||
base_wheel_vel["base_back_wheel"],
|
||||
base_wheel_vel["base_right_wheel"],
|
||||
)
|
||||
|
||||
arm_state = {f"{k}.pos": v for k, v in arm_pos.items()}
|
||||
|
||||
flat_states = {**arm_state, **base_vel}
|
||||
|
||||
obs_dict = {f"{OBS_STATE}": flat_states}
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
|
||||
|
||||
@@ -227,8 +377,12 @@ class LeKiwi(Robot):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
arm_goal_pos = {k: v for k, v in action.items() if k in self.arm_motors}
|
||||
base_goal_vel = {k: v for k, v in action.items() if k in self.base_motors}
|
||||
arm_goal_pos = {k: v for k, v in action.items() if k.endswith(".pos")}
|
||||
base_goal_vel = {k: v for k, v in action.items() if k.endswith(".vel")}
|
||||
|
||||
base_wheel_goal_vel = self._body_to_wheel_raw(
|
||||
base_goal_vel["x.vel"], base_goal_vel["y.vel"], base_goal_vel["theta.vel"]
|
||||
)
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# /!\ Slower fps expected due to reading from the follower.
|
||||
@@ -239,8 +393,9 @@ class LeKiwi(Robot):
|
||||
arm_goal_pos = arm_safe_goal_pos
|
||||
|
||||
# Send goal position to the actuators
|
||||
self.bus.sync_write("Goal_Position", arm_goal_pos)
|
||||
self.bus.sync_write("Goal_Velocity", base_goal_vel)
|
||||
arm_goal_pos_raw = {k.replace(".pos", ""): v for k, v in arm_goal_pos.items()}
|
||||
self.bus.sync_write("Goal_Position", arm_goal_pos_raw)
|
||||
self.bus.sync_write("Goal_Velocity", base_wheel_goal_vel)
|
||||
|
||||
return {**arm_goal_pos, **base_goal_vel}
|
||||
|
||||
|
||||
@@ -15,6 +15,7 @@
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
from functools import cached_property
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
import cv2
|
||||
@@ -54,8 +55,7 @@ class LeKiwiClient(Robot):
|
||||
|
||||
self.last_frames = {}
|
||||
|
||||
self.last_remote_arm_state = {}
|
||||
self.last_remote_base_state = {"base_left_wheel": 0, "base_back_wheel": 0, "base_right_wheel": 0}
|
||||
self.last_remote_state = {}
|
||||
|
||||
# Define three speed levels and a current index
|
||||
self.speed_levels = [
|
||||
@@ -68,53 +68,41 @@ class LeKiwiClient(Robot):
|
||||
self._is_connected = False
|
||||
self.logs = {}
|
||||
|
||||
@property
|
||||
def state_feature(self) -> dict:
|
||||
state_ft = {
|
||||
"arm_shoulder_pan": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_shoulder_lift": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_elbow_flex": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_wrist_flex": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_wrist_roll": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_gripper": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"x_cmd": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"y_cmd": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"theta_cmd": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
}
|
||||
return state_ft
|
||||
@cached_property
|
||||
def _state_ft(self) -> dict[str, type]:
|
||||
return dict.fromkeys(
|
||||
(
|
||||
"arm_shoulder_pan.pos",
|
||||
"arm_shoulder_lift.pos",
|
||||
"arm_elbow_flex.pos",
|
||||
"arm_wrist_flex.pos",
|
||||
"arm_wrist_roll.pos",
|
||||
"arm_gripper.pos",
|
||||
"x.vel",
|
||||
"y.vel",
|
||||
"theta.vel",
|
||||
),
|
||||
float,
|
||||
)
|
||||
|
||||
@property
|
||||
def action_feature(self) -> dict:
|
||||
action_ft = {
|
||||
"arm_shoulder_pan": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_shoulder_lift": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_elbow_flex": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_wrist_flex": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_wrist_roll": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_gripper": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"base_left_wheel": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"base_right_wheel": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"base_back_wheel": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
}
|
||||
return action_ft
|
||||
@cached_property
|
||||
def _state_order(self) -> tuple[str, ...]:
|
||||
return tuple(self._state_ft.keys())
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict[str, dict]:
|
||||
cam_ft = {
|
||||
f"{OBS_IMAGES}.front": {
|
||||
"shape": (480, 640, 3),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
"dtype": "image",
|
||||
},
|
||||
f"{OBS_IMAGES}.wrist": {
|
||||
"shape": (480, 640, 3),
|
||||
"names": ["height", "width", "channels"],
|
||||
"dtype": "image",
|
||||
"info": None,
|
||||
},
|
||||
@cached_property
|
||||
def _cameras_ft(self) -> dict[str, tuple]:
|
||||
return {
|
||||
"front": (480, 640, 3),
|
||||
"wrist": (640, 480, 3),
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
@cached_property
|
||||
def observation_features(self) -> dict[str, type | tuple]:
|
||||
return {**self._state_ft, **self._cameras_ft}
|
||||
|
||||
@cached_property
|
||||
def action_features(self) -> dict[str, type]:
|
||||
return self._state_ft
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
@@ -154,130 +142,6 @@ class LeKiwiClient(Robot):
|
||||
def calibrate(self) -> None:
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def _degps_to_raw(degps: float) -> int:
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
speed_in_steps = degps * steps_per_deg
|
||||
speed_int = int(round(speed_in_steps))
|
||||
# Cap the value to fit within signed 16-bit range (-32768 to 32767)
|
||||
if speed_int > 0x7FFF:
|
||||
speed_int = 0x7FFF # 32767 -> maximum positive value
|
||||
elif speed_int < -0x8000:
|
||||
speed_int = -0x8000 # -32768 -> minimum negative value
|
||||
return speed_int
|
||||
|
||||
@staticmethod
|
||||
def _raw_to_degps(raw_speed: int) -> float:
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
magnitude = raw_speed
|
||||
degps = magnitude / steps_per_deg
|
||||
return degps
|
||||
|
||||
def _body_to_wheel_raw(
|
||||
self,
|
||||
x_cmd: float,
|
||||
y_cmd: float,
|
||||
theta_cmd: float,
|
||||
wheel_radius: float = 0.05,
|
||||
base_radius: float = 0.125,
|
||||
max_raw: int = 3000,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert desired body-frame velocities into wheel raw commands.
|
||||
|
||||
Parameters:
|
||||
x_cmd : Linear velocity in x (m/s).
|
||||
y_cmd : Linear velocity in y (m/s).
|
||||
theta_cmd : Rotational velocity (deg/s).
|
||||
wheel_radius: Radius of each wheel (meters).
|
||||
base_radius : Distance from the center of rotation to each wheel (meters).
|
||||
max_raw : Maximum allowed raw command (ticks) per wheel.
|
||||
|
||||
Returns:
|
||||
A dictionary with wheel raw commands:
|
||||
{"base_left_wheel": value, "base_back_wheel": value, "base_right_wheel": value}.
|
||||
|
||||
Notes:
|
||||
- Internally, the method converts theta_cmd to rad/s for the kinematics.
|
||||
- The raw command is computed from the wheels angular speed in deg/s
|
||||
using _degps_to_raw(). If any command exceeds max_raw, all commands
|
||||
are scaled down proportionally.
|
||||
"""
|
||||
# Convert rotational velocity from deg/s to rad/s.
|
||||
theta_rad = theta_cmd * (np.pi / 180.0)
|
||||
# Create the body velocity vector [x, y, theta_rad].
|
||||
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
|
||||
|
||||
# Define the wheel mounting angles with a -90° offset.
|
||||
angles = np.radians(np.array([240, 120, 0]) - 90)
|
||||
# Build the kinematic matrix: each row maps body velocities to a wheel’s linear speed.
|
||||
# The third column (base_radius) accounts for the effect of rotation.
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
||||
# Compute each wheel’s linear speed (m/s) and then its angular speed (rad/s).
|
||||
wheel_linear_speeds = m.dot(velocity_vector)
|
||||
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
|
||||
|
||||
# Convert wheel angular speeds from rad/s to deg/s.
|
||||
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
|
||||
|
||||
# Scaling
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
|
||||
max_raw_computed = max(raw_floats)
|
||||
if max_raw_computed > max_raw:
|
||||
scale = max_raw / max_raw_computed
|
||||
wheel_degps = wheel_degps * scale
|
||||
|
||||
# Convert each wheel’s angular speed (deg/s) to a raw integer.
|
||||
wheel_raw = [self._degps_to_raw(deg) for deg in wheel_degps]
|
||||
|
||||
return {
|
||||
"base_left_wheel": wheel_raw[0],
|
||||
"base_back_wheel": wheel_raw[1],
|
||||
"base_right_wheel": wheel_raw[2],
|
||||
}
|
||||
|
||||
def _wheel_raw_to_body(
|
||||
self, wheel_raw: dict[str, Any], wheel_radius: float = 0.05, base_radius: float = 0.125
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Convert wheel raw command feedback back into body-frame velocities.
|
||||
|
||||
Parameters:
|
||||
wheel_raw : Vector with raw wheel commands ("base_left_wheel", "base_back_wheel", "base_right_wheel").
|
||||
wheel_radius: Radius of each wheel (meters).
|
||||
base_radius : Distance from the robot center to each wheel (meters).
|
||||
|
||||
Returns:
|
||||
A dict (x_cmd, y_cmd, theta_cmd) where:
|
||||
OBS_STATE.x_cmd : Linear velocity in x (m/s).
|
||||
OBS_STATE.y_cmd : Linear velocity in y (m/s).
|
||||
OBS_STATE.theta_cmd : Rotational velocity in deg/s.
|
||||
"""
|
||||
|
||||
# Convert each raw command back to an angular speed in deg/s.
|
||||
wheel_degps = np.array([LeKiwiClient._raw_to_degps(int(v)) for _, v in wheel_raw.items()])
|
||||
# Convert from deg/s to rad/s.
|
||||
wheel_radps = wheel_degps * (np.pi / 180.0)
|
||||
# Compute each wheel’s linear speed (m/s) from its angular speed.
|
||||
wheel_linear_speeds = wheel_radps * wheel_radius
|
||||
|
||||
# Define the wheel mounting angles with a -90° offset.
|
||||
angles = np.radians(np.array([240, 120, 0]) - 90)
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
||||
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
|
||||
m_inv = np.linalg.inv(m)
|
||||
velocity_vector = m_inv.dot(wheel_linear_speeds)
|
||||
x_cmd, y_cmd, theta_rad = velocity_vector
|
||||
theta_cmd = theta_rad * (180.0 / np.pi)
|
||||
return {
|
||||
f"{OBS_STATE}.x_cmd": x_cmd * 1000,
|
||||
f"{OBS_STATE}.y_cmd": y_cmd * 1000,
|
||||
f"{OBS_STATE}.theta_cmd": theta_cmd,
|
||||
} # Convert to mm/s
|
||||
|
||||
def _poll_and_get_latest_message(self) -> Optional[str]:
|
||||
"""Polls the ZMQ socket for a limited time and returns the latest message string."""
|
||||
poller = zmq.Poller()
|
||||
@@ -331,25 +195,24 @@ class LeKiwiClient(Robot):
|
||||
|
||||
def _remote_state_from_obs(
|
||||
self, observation: Dict[str, Any]
|
||||
) -> Tuple[Dict[str, np.ndarray], Dict[str, Any], Dict[str, Any]]:
|
||||
"""Extracts frames, speed, and arm state from the parsed observation."""
|
||||
) -> Tuple[Dict[str, np.ndarray], Dict[str, Any]]:
|
||||
"""Extracts frames, and state from the parsed observation."""
|
||||
flat_state = observation[OBS_STATE]
|
||||
|
||||
# Separate image and state data
|
||||
image_observation = {k: v for k, v in observation.items() if k.startswith(OBS_IMAGES)}
|
||||
state_observation = {k: v for k, v in observation.items() if k.startswith(OBS_STATE)}
|
||||
state_vec = np.array(
|
||||
[flat_state.get(k, 0.0) for k in self._state_order],
|
||||
dtype=np.float32,
|
||||
)
|
||||
|
||||
# Decode images
|
||||
image_observation = {k: v for k, v in observation.items() if k.startswith(OBS_IMAGES)}
|
||||
current_frames: Dict[str, np.ndarray] = {}
|
||||
for cam_name, image_b64 in image_observation.items():
|
||||
frame = self._decode_image_from_b64(image_b64)
|
||||
if frame is not None:
|
||||
current_frames[cam_name] = frame
|
||||
|
||||
# Extract state components
|
||||
current_arm_state = {k: v for k, v in state_observation.items() if k.startswith(f"{OBS_STATE}.arm")}
|
||||
current_base_state = {k: v for k, v in state_observation.items() if k.startswith(f"{OBS_STATE}.base")}
|
||||
|
||||
return current_frames, current_arm_state, current_base_state
|
||||
return current_frames, {"observation.state": state_vec}
|
||||
|
||||
def _get_data(self) -> Tuple[Dict[str, np.ndarray], Dict[str, Any], Dict[str, Any]]:
|
||||
"""
|
||||
@@ -365,27 +228,26 @@ class LeKiwiClient(Robot):
|
||||
|
||||
# 2. If no message, return cached data
|
||||
if latest_message_str is None:
|
||||
return self.last_frames, self.last_remote_arm_state, self.last_remote_base_state
|
||||
return self.last_frames, self.last_remote_state
|
||||
|
||||
# 3. Parse the JSON message
|
||||
observation = self._parse_observation_json(latest_message_str)
|
||||
|
||||
# 4. If JSON parsing failed, return cached data
|
||||
if observation is None:
|
||||
return self.last_frames, self.last_remote_arm_state, self.last_remote_base_state
|
||||
return self.last_frames, self.last_remote_state
|
||||
|
||||
# 5. Process the valid observation data
|
||||
try:
|
||||
new_frames, new_arm_state, new_base_state = self._remote_state_from_obs(observation)
|
||||
new_frames, new_state = self._remote_state_from_obs(observation)
|
||||
except Exception as e:
|
||||
logging.error(f"Error processing observation data, serving last observation: {e}")
|
||||
return self.last_frames, self.last_remote_arm_state, self.last_remote_base_state
|
||||
return self.last_frames, self.last_remote_state
|
||||
|
||||
self.last_frames = new_frames
|
||||
self.last_remote_arm_state = new_arm_state
|
||||
self.last_remote_base_state = new_base_state
|
||||
self.last_remote_state = new_state
|
||||
|
||||
return new_frames, new_arm_state, new_base_state
|
||||
return new_frames, new_state
|
||||
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
"""
|
||||
@@ -396,13 +258,7 @@ class LeKiwiClient(Robot):
|
||||
if not self._is_connected:
|
||||
raise DeviceNotConnectedError("LeKiwiClient is not connected. You need to run `robot.connect()`.")
|
||||
|
||||
frames, remote_arm_state, remote_base_state = self._get_data()
|
||||
remote_body_state = self._wheel_raw_to_body(remote_base_state)
|
||||
|
||||
obs_dict = {**remote_arm_state, **remote_body_state}
|
||||
|
||||
# TODO(Steven): Remove this when it is possible to record a non-numpy array value
|
||||
obs_dict = {k: np.array([v], dtype=np.float32) for k, v in obs_dict.items()}
|
||||
frames, obs_dict = self._get_data()
|
||||
|
||||
# Loop over each configured camera
|
||||
for cam_name, frame in frames.items():
|
||||
@@ -413,7 +269,7 @@ class LeKiwiClient(Robot):
|
||||
|
||||
return obs_dict
|
||||
|
||||
def _from_keyboard_to_wheel_action(self, pressed_keys: np.ndarray):
|
||||
def _from_keyboard_to_base_action(self, pressed_keys: np.ndarray):
|
||||
# Speed control
|
||||
if self.teleop_keys["speed_up"] in pressed_keys:
|
||||
self.speed_index = min(self.speed_index + 1, 2)
|
||||
@@ -439,7 +295,11 @@ class LeKiwiClient(Robot):
|
||||
theta_cmd += theta_speed
|
||||
if self.teleop_keys["rotate_right"] in pressed_keys:
|
||||
theta_cmd -= theta_speed
|
||||
return self._body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
|
||||
return {
|
||||
"x.vel": x_cmd,
|
||||
"y.vel": y_cmd,
|
||||
"theta.vel": theta_cmd,
|
||||
}
|
||||
|
||||
def configure(self):
|
||||
pass
|
||||
@@ -461,26 +321,23 @@ class LeKiwiClient(Robot):
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
goal_pos = {}
|
||||
|
||||
common_keys = [
|
||||
key
|
||||
for key in action
|
||||
if key in (motor.replace("arm_", "") for motor, _ in self.action_feature.items())
|
||||
if key in (motor.replace("arm_", "") for motor, _ in self.action_features.items())
|
||||
]
|
||||
|
||||
arm_actions = {"arm_" + arm_motor: action[arm_motor] for arm_motor in common_keys}
|
||||
goal_pos = arm_actions
|
||||
|
||||
keyboard_keys = np.array(list(set(action.keys()) - set(common_keys)))
|
||||
wheel_actions = self._from_keyboard_to_wheel_action(keyboard_keys)
|
||||
goal_pos = {**arm_actions, **wheel_actions}
|
||||
base_actions = self._from_keyboard_to_base_action(keyboard_keys)
|
||||
goal_pos = {**arm_actions, **base_actions}
|
||||
|
||||
self.zmq_cmd_socket.send_string(json.dumps(goal_pos)) # action is in motor space
|
||||
|
||||
# TODO(Steven): Remove the np conversion when it is possible to record a non-numpy array value
|
||||
goal_pos = {"action." + k: np.array([v], dtype=np.float32) for k, v in goal_pos.items()}
|
||||
return goal_pos
|
||||
actions = np.array([goal_pos.get(k, 0.0) for k in self._state_order], dtype=np.float32)
|
||||
return {"action.state": actions}
|
||||
|
||||
def disconnect(self):
|
||||
"""Cleans ZMQ comms"""
|
||||
|
||||
Reference in New Issue
Block a user