forked from tangger/lerobot
Remove warnings (#111)
- Replace `use_pretrained_backbone` with `pretrained_backbone_weights` - Bump diffusers' minimum version `0.26.3` -> `0.27.2` - Add ignore flags in CI's pytest - Change Box observation spaces in simulation environments - Set `version_base="1.2"` in Hydra initializations - Bump einops' minimum version `0.7.0` -> `0.8.0`
This commit is contained in:
11
.github/workflows/test.yml
vendored
11
.github/workflows/test.yml
vendored
@@ -53,7 +53,14 @@ jobs:
|
||||
poetry install --all-extras
|
||||
|
||||
- name: Test with pytest
|
||||
run: pytest -v --cov=./lerobot --durations=0 tests
|
||||
run: |
|
||||
pytest tests -v --cov=./lerobot --durations=0 \
|
||||
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
|
||||
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
|
||||
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
|
||||
&& rm -rf tests/outputs outputs
|
||||
|
||||
- name: Test end-to-end
|
||||
run: make test-end-to-end
|
||||
run: |
|
||||
make test-end-to-end \
|
||||
&& rm -rf outputs
|
||||
|
||||
@@ -33,8 +33,8 @@ class ActionChunkingTransformerConfig:
|
||||
deviation and "min_max" which rescale in a [-1, 1] range.
|
||||
unnormalize_output_modes: Similar dictionary as `normalize_input_modes`, but to unormalize in original scale.
|
||||
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
|
||||
use_pretrained_backbone: Whether the backbone should be initialized with pretrained weights from
|
||||
torchvision.
|
||||
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
|
||||
`None` means no pretrained weights.
|
||||
replace_final_stride_with_dilation: Whether to replace the ResNet's final 2x2 stride with a dilated
|
||||
convolution.
|
||||
pre_norm: Whether to use "pre-norm" in the transformer blocks.
|
||||
@@ -90,7 +90,7 @@ class ActionChunkingTransformerConfig:
|
||||
# Architecture.
|
||||
# Vision backbone.
|
||||
vision_backbone: str = "resnet18"
|
||||
use_pretrained_backbone: bool = True
|
||||
pretrained_backbone_weights: str | None = "ResNet18_Weights.IMAGENET1K_V1"
|
||||
replace_final_stride_with_dilation: int = False
|
||||
# Transformer layers.
|
||||
pre_norm: bool = False
|
||||
|
||||
@@ -104,7 +104,7 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
||||
# Backbone for image feature extraction.
|
||||
backbone_model = getattr(torchvision.models, cfg.vision_backbone)(
|
||||
replace_stride_with_dilation=[False, False, cfg.replace_final_stride_with_dilation],
|
||||
pretrained=cfg.use_pretrained_backbone,
|
||||
weights=cfg.pretrained_backbone_weights,
|
||||
norm_layer=FrozenBatchNorm2d,
|
||||
)
|
||||
# Note: The assumption here is that we are using a ResNet model (and hence layer4 is the final feature
|
||||
|
||||
@@ -35,8 +35,8 @@ class DiffusionConfig:
|
||||
within the image size. If None, no cropping is done.
|
||||
crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
|
||||
mode).
|
||||
use_pretrained_backbone: Whether the backbone should be initialized with pretrained weights from
|
||||
torchvision.
|
||||
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
|
||||
`None` means no pretrained weights.
|
||||
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
|
||||
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
|
||||
spatial_softmax_num_keypoints: Number of keypoints for SpatialSoftmax.
|
||||
@@ -96,7 +96,7 @@ class DiffusionConfig:
|
||||
vision_backbone: str = "resnet18"
|
||||
crop_shape: tuple[int, int] | None = (84, 84)
|
||||
crop_is_random: bool = True
|
||||
use_pretrained_backbone: bool = False
|
||||
pretrained_backbone_weights: str | None = None
|
||||
use_group_norm: bool = True
|
||||
spatial_softmax_num_keypoints: int = 32
|
||||
# Unet.
|
||||
|
||||
@@ -378,13 +378,13 @@ class _RgbEncoder(nn.Module):
|
||||
|
||||
# Set up backbone.
|
||||
backbone_model = getattr(torchvision.models, cfg.vision_backbone)(
|
||||
pretrained=cfg.use_pretrained_backbone
|
||||
weights=cfg.pretrained_backbone_weights
|
||||
)
|
||||
# Note: This assumes that the layer4 feature map is children()[-3]
|
||||
# TODO(alexander-soare): Use a safer alternative.
|
||||
self.backbone = nn.Sequential(*(list(backbone_model.children())[:-2]))
|
||||
if cfg.use_group_norm:
|
||||
if cfg.use_pretrained_backbone:
|
||||
if cfg.pretrained_backbone_weights:
|
||||
raise ValueError(
|
||||
"You can't replace BatchNorm in a pretrained model without ruining the weights!"
|
||||
)
|
||||
|
||||
12
lerobot/common/utils/io_utils.py
Normal file
12
lerobot/common/utils/io_utils.py
Normal file
@@ -0,0 +1,12 @@
|
||||
import warnings
|
||||
|
||||
import imageio
|
||||
|
||||
|
||||
def write_video(video_path, stacked_frames, fps):
|
||||
# Filter out DeprecationWarnings raised from pkg_resources
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings(
|
||||
"ignore", "pkg_resources is deprecated as an API", category=DeprecationWarning
|
||||
)
|
||||
imageio.mimsave(video_path, stacked_frames, fps=fps)
|
||||
@@ -92,7 +92,8 @@ def init_hydra_config(config_path: str, overrides: list[str] | None = None) -> D
|
||||
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
||||
# Hydra needs a path relative to this file.
|
||||
hydra.initialize(
|
||||
str(_relative_path_between(Path(config_path).absolute().parent, Path(__file__).absolute().parent))
|
||||
str(_relative_path_between(Path(config_path).absolute().parent, Path(__file__).absolute().parent)),
|
||||
version_base="1.2",
|
||||
)
|
||||
cfg = hydra.compose(Path(config_path).stem, overrides)
|
||||
return cfg
|
||||
|
||||
@@ -45,7 +45,7 @@ policy:
|
||||
# Architecture.
|
||||
# Vision backbone.
|
||||
vision_backbone: resnet18
|
||||
use_pretrained_backbone: true
|
||||
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
||||
replace_final_stride_with_dilation: false
|
||||
# Transformer layers.
|
||||
pre_norm: false
|
||||
|
||||
@@ -61,7 +61,7 @@ policy:
|
||||
vision_backbone: resnet18
|
||||
crop_shape: [84, 84]
|
||||
crop_is_random: True
|
||||
use_pretrained_backbone: false
|
||||
pretrained_backbone_weights: null
|
||||
use_group_norm: True
|
||||
spatial_softmax_num_keypoints: 32
|
||||
# Unet.
|
||||
|
||||
@@ -38,7 +38,6 @@ from pathlib import Path
|
||||
|
||||
import einops
|
||||
import gymnasium as gym
|
||||
import imageio
|
||||
import numpy as np
|
||||
import torch
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
@@ -51,13 +50,10 @@ from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.envs.utils import postprocess_action, preprocess_observation
|
||||
from lerobot.common.logger import log_output_dir
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils.io_utils import write_video
|
||||
from lerobot.common.utils.utils import get_safe_torch_device, init_hydra_config, init_logging, set_global_seed
|
||||
|
||||
|
||||
def write_video(video_path, stacked_frames, fps):
|
||||
imageio.mimsave(video_path, stacked_frames, fps=fps)
|
||||
|
||||
|
||||
def eval_policy(
|
||||
env: gym.vector.VectorEnv,
|
||||
policy: torch.nn.Module,
|
||||
|
||||
@@ -22,7 +22,7 @@ from lerobot.common.utils.utils import (
|
||||
from lerobot.scripts.eval import eval_policy
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_name="default", config_path="../configs")
|
||||
@hydra.main(version_base="1.2", config_name="default", config_path="../configs")
|
||||
def train_cli(cfg: dict):
|
||||
train(
|
||||
cfg,
|
||||
|
||||
@@ -16,7 +16,7 @@ MAX_NUM_STEPS = 1000
|
||||
FIRST_FRAME = 0
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_name="default", config_path="../configs")
|
||||
@hydra.main(version_base="1.2", config_name="default", config_path="../configs")
|
||||
def visualize_dataset_cli(cfg: dict):
|
||||
visualize_dataset(cfg, out_dir=hydra.core.hydra_config.HydraConfig.get().runtime.output_dir)
|
||||
|
||||
|
||||
26
poetry.lock
generated
26
poetry.lock
generated
@@ -597,13 +597,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "diffusers"
|
||||
version = "0.26.3"
|
||||
version = "0.27.2"
|
||||
description = "State-of-the-art diffusion in PyTorch and JAX."
|
||||
optional = false
|
||||
python-versions = ">=3.8.0"
|
||||
files = [
|
||||
{file = "diffusers-0.26.3-py3-none-any.whl", hash = "sha256:f8f5710c8f9170e9749f0b104f50fc4a1259f8aff3effed99598409a5ea9b1cd"},
|
||||
{file = "diffusers-0.26.3.tar.gz", hash = "sha256:e217ea39e85b0bd34fee11f8b39fd00116680b05ff7a70c0b4fdab5351ae4f96"},
|
||||
{file = "diffusers-0.27.2-py3-none-any.whl", hash = "sha256:85da5cd1098ab428535d592136973ec0c3f12f78148c94b379cb9f02d2414e75"},
|
||||
{file = "diffusers-0.27.2.tar.gz", hash = "sha256:6cefd7770d7fc1d139614233aa17cdcd639c138d0c3517b8d8bbc8cf573050a0"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -617,12 +617,12 @@ requests = "*"
|
||||
safetensors = ">=0.3.1"
|
||||
|
||||
[package.extras]
|
||||
dev = ["GitPython (<3.1.19)", "Jinja2", "accelerate (>=0.11.0)", "compel (==0.1.8)", "datasets", "flax (>=0.4.1)", "hf-doc-builder (>=0.3.0)", "invisible-watermark (>=0.2.0)", "isort (>=5.5.4)", "jax (>=0.4.1)", "jaxlib (>=0.4.1)", "k-diffusion (>=0.0.12)", "librosa", "parameterized", "peft (>=0.6.0)", "protobuf (>=3.20.3,<4)", "pytest", "pytest-timeout", "pytest-xdist", "requests-mock (==1.10.0)", "ruff (==0.1.5)", "safetensors (>=0.3.1)", "scipy", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "torch (>=1.4,<2.2.0)", "torchvision (<0.17)", "transformers (>=4.25.1)", "urllib3 (<=2.0.0)"]
|
||||
dev = ["GitPython (<3.1.19)", "Jinja2", "accelerate (>=0.11.0)", "compel (==0.1.8)", "datasets", "flax (>=0.4.1)", "hf-doc-builder (>=0.3.0)", "invisible-watermark (>=0.2.0)", "isort (>=5.5.4)", "jax (>=0.4.1)", "jaxlib (>=0.4.1)", "k-diffusion (>=0.0.12)", "librosa", "parameterized", "peft (>=0.6.0)", "protobuf (>=3.20.3,<4)", "pytest", "pytest-timeout", "pytest-xdist", "requests-mock (==1.10.0)", "ruff (==0.1.5)", "safetensors (>=0.3.1)", "scipy", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "torch (>=1.4)", "torchvision", "transformers (>=4.25.1)", "urllib3 (<=2.0.0)"]
|
||||
docs = ["hf-doc-builder (>=0.3.0)"]
|
||||
flax = ["flax (>=0.4.1)", "jax (>=0.4.1)", "jaxlib (>=0.4.1)"]
|
||||
quality = ["hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (==0.1.5)", "urllib3 (<=2.0.0)"]
|
||||
test = ["GitPython (<3.1.19)", "Jinja2", "compel (==0.1.8)", "datasets", "invisible-watermark (>=0.2.0)", "k-diffusion (>=0.0.12)", "librosa", "parameterized", "pytest", "pytest-timeout", "pytest-xdist", "requests-mock (==1.10.0)", "safetensors (>=0.3.1)", "scipy", "sentencepiece (>=0.1.91,!=0.1.92)", "torchvision (<0.17)", "transformers (>=4.25.1)"]
|
||||
torch = ["accelerate (>=0.11.0)", "torch (>=1.4,<2.2.0)"]
|
||||
test = ["GitPython (<3.1.19)", "Jinja2", "compel (==0.1.8)", "datasets", "invisible-watermark (>=0.2.0)", "k-diffusion (>=0.0.12)", "librosa", "parameterized", "pytest", "pytest-timeout", "pytest-xdist", "requests-mock (==1.10.0)", "safetensors (>=0.3.1)", "scipy", "sentencepiece (>=0.1.91,!=0.1.92)", "torchvision", "transformers (>=4.25.1)"]
|
||||
torch = ["accelerate (>=0.11.0)", "torch (>=1.4)"]
|
||||
training = ["Jinja2", "accelerate (>=0.11.0)", "datasets", "peft (>=0.6.0)", "protobuf (>=3.20.3,<4)", "tensorboard"]
|
||||
|
||||
[[package]]
|
||||
@@ -779,13 +779,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "einops"
|
||||
version = "0.7.0"
|
||||
version = "0.8.0"
|
||||
description = "A new flavour of deep learning operations"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "einops-0.7.0-py3-none-any.whl", hash = "sha256:0f3096f26b914f465f6ff3c66f5478f9a5e380bb367ffc6493a68143fbbf1fd1"},
|
||||
{file = "einops-0.7.0.tar.gz", hash = "sha256:b2b04ad6081a3b227080c9bf5e3ace7160357ff03043cd66cc5b2319eb7031d1"},
|
||||
{file = "einops-0.8.0-py3-none-any.whl", hash = "sha256:9572fb63046264a862693b0a87088af3bdc8c068fde03de63453cbbde245465f"},
|
||||
{file = "einops-0.8.0.tar.gz", hash = "sha256:63486517fed345712a8385c100cb279108d9d47e6ae59099b07657e983deae85"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1121,7 +1121,7 @@ mujoco = "^2.3.7"
|
||||
type = "git"
|
||||
url = "git@github.com:huggingface/gym-aloha.git"
|
||||
reference = "HEAD"
|
||||
resolved_reference = "c636f05ba0d1760df94537da84c860be1487e17f"
|
||||
resolved_reference = "12c8171d6708ec6d8547c310fe736d8d494195c5"
|
||||
|
||||
[[package]]
|
||||
name = "gym-pusht"
|
||||
@@ -1144,7 +1144,7 @@ shapely = "^2.0.3"
|
||||
type = "git"
|
||||
url = "git@github.com:huggingface/gym-pusht.git"
|
||||
reference = "HEAD"
|
||||
resolved_reference = "080d4ce4d8d3140b2fd204ed628bda14dc58ff06"
|
||||
resolved_reference = "e0684ff988d223808c0a9dcfaba9dc4991791370"
|
||||
|
||||
[[package]]
|
||||
name = "gym-xarm"
|
||||
@@ -1164,7 +1164,7 @@ mujoco = "^2.3.7"
|
||||
type = "git"
|
||||
url = "git@github.com:huggingface/gym-xarm.git"
|
||||
reference = "HEAD"
|
||||
resolved_reference = "27e65c981f9a8d252eca8f157f83508ba6149db7"
|
||||
resolved_reference = "415811fc34863d349ed113eab77e756726c03525"
|
||||
|
||||
[[package]]
|
||||
name = "gymnasium"
|
||||
@@ -4299,4 +4299,4 @@ xarm = ["gym-xarm"]
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.10"
|
||||
content-hash = "8bd1352973c6104e52f50b68f7387d26ced9b07a52e889540b73d132865cda38"
|
||||
content-hash = "0f72eb92ac8817a46f0659b4d72647a6b76f6e4ba762d11b280f8a88e6cd4371"
|
||||
|
||||
@@ -34,13 +34,13 @@ wandb = "^0.16.3"
|
||||
imageio = {extras = ["ffmpeg"], version = "^2.34.0"}
|
||||
gdown = "^5.1.0"
|
||||
hydra-core = "^1.3.2"
|
||||
einops = "^0.7.0"
|
||||
einops = "^0.8.0"
|
||||
pymunk = "^6.6.0"
|
||||
zarr = "^2.17.0"
|
||||
numba = "^0.59.0"
|
||||
torch = "^2.2.1"
|
||||
opencv-python = "^4.9.0.80"
|
||||
diffusers = "^0.26.3"
|
||||
diffusers = "^0.27.2"
|
||||
torchvision = "^0.18.0"
|
||||
h5py = "^3.10.0"
|
||||
huggingface-hub = "^0.21.4"
|
||||
|
||||
Reference in New Issue
Block a user