Small fix and improve logging message

This commit is contained in:
Cadene
2024-02-27 11:44:26 +00:00
parent 21670dce90
commit 7df542445c
5 changed files with 37 additions and 16 deletions

View File

@@ -22,21 +22,24 @@ python setup.py develop
```
python lerobot/scripts/train.py \
--config-name=pusht hydra.job.name=pusht
hydra.job.name=pusht \
env=pusht
```
### Visualize offline buffer
```
python lerobot/scripts/visualize_dataset.py \
--config-name=pusht hydra.run.dir=tmp/$(date +"%Y_%m_%d")
hydra.run.dir=tmp/$(date +"%Y_%m_%d") \
env=pusht
```
### Visualize online buffer / Eval
```
python lerobot/scripts/eval.py \
--config-name=pusht hydra.run.dir=tmp/$(date +"%Y_%m_%d")
hydra.run.dir=tmp/$(date +"%Y_%m_%d") \
env=pusht
```

View File

@@ -3,6 +3,7 @@
eval_episodes: 50
eval_freq: 7500
save_freq: 75000
log_freq: 250
# TODO: same as simxarm, need to adjust
offline_steps: 25000
online_steps: 25000

View File

@@ -21,6 +21,9 @@ past_action_visible: False
keypoint_visible_rate: 1.0
obs_as_global_cond: True
offline_steps: 50000
online_steps: 0
policy:
name: diffusion

View File

@@ -5,6 +5,7 @@ import hydra
import imageio
import numpy as np
import torch
import tqdm
from tensordict.nn import TensorDictModule
from termcolor import colored
from torchrl.envs import EnvBase
@@ -32,7 +33,7 @@ def eval_policy(
max_rewards = []
successes = []
threads = []
for i in range(num_episodes):
for i in tqdm.tqdm(range(num_episodes)):
tensordict = env.reset()
ep_frames = []

View File

@@ -50,7 +50,7 @@ def log_training_metrics(L, metrics, step, online_episode_idx, start_time, is_of
def eval_policy_and_log(
env, td_policy, step, online_episode_idx, start_time, is_offline, cfg, L
env, td_policy, step, online_episode_idx, start_time, cfg, L, is_offline
):
common_metrics = {
"episode": online_episode_idx,
@@ -83,7 +83,10 @@ def train(cfg: dict, out_dir=None, job_name=None):
set_seed(cfg.seed)
print(colored("Work dir:", "yellow", attrs=["bold"]), out_dir)
print("make_env")
env = make_env(cfg)
print("make_policy")
policy = make_policy(cfg)
td_policy = TensorDictModule(
@@ -92,12 +95,12 @@ def train(cfg: dict, out_dir=None, job_name=None):
out_keys=["action"],
)
# initialize offline dataset
print("make_offline_buffer")
offline_buffer = make_offline_buffer(cfg)
# TODO(rcadene): move balanced_sampling, per_alpha, per_beta outside policy
if cfg.policy.balanced_sampling:
print("make online_buffer")
num_traj_per_batch = cfg.policy.batch_size
online_sampler = PrioritizedSliceSampler(
@@ -117,15 +120,16 @@ def train(cfg: dict, out_dir=None, job_name=None):
online_episode_idx = 0
start_time = time.time()
step = 0
step = 0 # number of policy update
# First eval with a random model or pretrained
print("First eval_policy_and_log with a random model or pretrained")
eval_policy_and_log(
env, td_policy, step, online_episode_idx, start_time, is_offline, cfg, L
env, td_policy, step, online_episode_idx, start_time, cfg, L, is_offline=True
)
# Train offline
for _ in range(cfg.offline_steps):
for offline_step in range(cfg.offline_steps):
if offline_step == 0:
print("Start offline training on a fixed dataset")
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
metrics = policy.update(offline_buffer, step)
@@ -136,7 +140,14 @@ def train(cfg: dict, out_dir=None, job_name=None):
if step > 0 and step % cfg.eval_freq == 0:
eval_policy_and_log(
env, td_policy, step, online_episode_idx, start_time, is_offline, cfg, L
env,
td_policy,
step,
online_episode_idx,
start_time,
cfg,
L,
is_offline=True,
)
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
@@ -145,10 +156,12 @@ def train(cfg: dict, out_dir=None, job_name=None):
step += 1
# Train online
demo_buffer = offline_buffer if cfg.policy.balanced_sampling else None
for _ in range(cfg.online_steps):
for env_step in range(cfg.online_steps):
if env_step == 0:
print("Start online training by interacting with environment")
# TODO: use SyncDataCollector for that?
# TODO: add configurable number of rollout? (default=1)
with torch.no_grad():
rollout = env.rollout(
max_steps=cfg.env.episode_length,
@@ -191,9 +204,9 @@ def train(cfg: dict, out_dir=None, job_name=None):
step,
online_episode_idx,
start_time,
is_offline,
cfg,
L,
is_offline=False,
)
if step > 0 and cfg.save_model and step % cfg.save_freq == 0: