forked from tangger/lerobot
WIP aggregate
This commit is contained in:
@@ -6,7 +6,6 @@ from datatrove.executor.slurm import SlurmPipelineExecutor
|
||||
from datatrove.pipeline.base import PipelineStep
|
||||
|
||||
from examples.port_datasets.droid_rlds.port_droid import DROID_SHARDS
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
|
||||
|
||||
class PortDroidShards(PipelineStep):
|
||||
@@ -30,6 +29,12 @@ class PortDroidShards(PipelineStep):
|
||||
|
||||
shard_repo_id = f"{self.repo_id}_world_{world_size}_rank_{rank}"
|
||||
|
||||
try:
|
||||
validate_dataset(shard_repo_id)
|
||||
return
|
||||
except:
|
||||
pass
|
||||
|
||||
port_droid(
|
||||
self.raw_dir,
|
||||
shard_repo_id,
|
||||
|
||||
@@ -5,6 +5,7 @@ from pathlib import Path
|
||||
import pandas as pd
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.constants import HF_LEROBOT_HOME
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
|
||||
from lerobot.common.datasets.utils import (
|
||||
@@ -47,12 +48,12 @@ def validate_all_metadata(all_metadata: list[LeRobotDatasetMetadata]):
|
||||
return fps, robot_type, features
|
||||
|
||||
|
||||
def update_episode_frame_task(df, episode_index_to_add, old_tasks, new_tasks, frame_index_to_add):
|
||||
def update_data_df(df, src_meta, dst_meta):
|
||||
def _update(row):
|
||||
row["episode_index"] = row["episode_index"] + episode_index_to_add
|
||||
row["index"] = row["index"] + frame_index_to_add
|
||||
task = old_tasks.iloc[row["task_index"]].name
|
||||
row["task_index"] = new_tasks.loc[task].task_index.item()
|
||||
row["episode_index"] = row["episode_index"] + dst_meta["total_episodes"]
|
||||
row["index"] = row["index"] + dst_meta["total_frames"]
|
||||
task = src_meta.tasks.iloc[row["task_index"]].name
|
||||
row["task_index"] = dst_meta.tasks.loc[task].task_index.item()
|
||||
return row
|
||||
|
||||
return df.apply(_update, axis=1)
|
||||
@@ -60,26 +61,28 @@ def update_episode_frame_task(df, episode_index_to_add, old_tasks, new_tasks, fr
|
||||
|
||||
def update_meta_data(
|
||||
df,
|
||||
meta_chunk_index_to_add,
|
||||
meta_file_index_to_add,
|
||||
data_chunk_index_to_add,
|
||||
data_file_index_to_add,
|
||||
videos_chunk_index_to_add,
|
||||
videos_file_index_to_add,
|
||||
frame_index_to_add,
|
||||
dst_meta,
|
||||
meta_idx,
|
||||
data_idx,
|
||||
videos_idx,
|
||||
):
|
||||
def _update(row):
|
||||
row["meta/episodes/chunk_index"] = row["meta/episodes/chunk_index"] + meta_chunk_index_to_add
|
||||
row["meta/episodes/file_index"] = row["meta/episodes/file_index"] + meta_file_index_to_add
|
||||
row["data/chunk_index"] = row["data/chunk_index"] + data_chunk_index_to_add
|
||||
row["data/file_index"] = row["data/file_index"] + data_file_index_to_add
|
||||
for key in videos_chunk_index_to_add:
|
||||
row[f"videos/{key}/chunk_index"] = (
|
||||
row[f"videos/{key}/chunk_index"] + videos_chunk_index_to_add[key]
|
||||
row["meta/episodes/chunk_index"] = row["meta/episodes/chunk_index"] + meta_idx["chunk_index"]
|
||||
row["meta/episodes/file_index"] = row["meta/episodes/file_index"] + meta_idx["file_index"]
|
||||
row["data/chunk_index"] = row["data/chunk_index"] + data_idx["chunk_index"]
|
||||
row["data/file_index"] = row["data/file_index"] + data_idx["file_index"]
|
||||
for key, video_idx in videos_idx.items():
|
||||
row[f"videos/{key}/chunk_index"] = row[f"videos/{key}/chunk_index"] + video_idx["chunk_index"]
|
||||
row[f"videos/{key}/file_index"] = row[f"videos/{key}/file_index"] + video_idx["file_index"]
|
||||
row[f"videos/{key}/from_timestamp"] = (
|
||||
row[f"videos/{key}/from_timestamp"] + video_idx["latest_duration"]
|
||||
)
|
||||
row[f"videos/{key}/file_index"] = row[f"videos/{key}/file_index"] + videos_file_index_to_add[key]
|
||||
row["dataset_from_index"] = row["dataset_from_index"] + frame_index_to_add
|
||||
row["dataset_to_index"] = row["dataset_to_index"] + frame_index_to_add
|
||||
row[f"videos/{key}/to_timestamp"] = (
|
||||
row[f"videos/{key}/to_timestamp"] + video_idx["latest_duration"]
|
||||
)
|
||||
row["dataset_from_index"] = row["dataset_from_index"] + dst_meta.info["total_frames"]
|
||||
row["dataset_to_index"] = row["dataset_to_index"] + dst_meta.info["total_frames"]
|
||||
row["episode_index"] = row["episode_index"] + dst_meta.info["total_episodes"]
|
||||
return row
|
||||
|
||||
return df.apply(_update, axis=1)
|
||||
@@ -88,214 +91,309 @@ def update_meta_data(
|
||||
def aggregate_datasets(repo_ids: list[str], aggr_repo_id: str, roots: list[Path] = None, aggr_root=None):
|
||||
logging.info("Start aggregate_datasets")
|
||||
|
||||
if roots is None:
|
||||
all_metadata = [LeRobotDatasetMetadata(repo_id) for repo_id in repo_ids]
|
||||
else:
|
||||
all_metadata = [
|
||||
# Load metadata
|
||||
all_metadata = (
|
||||
[LeRobotDatasetMetadata(repo_id) for repo_id in repo_ids]
|
||||
if roots is None
|
||||
else [
|
||||
LeRobotDatasetMetadata(repo_id, root=root) for repo_id, root in zip(repo_ids, roots, strict=False)
|
||||
]
|
||||
|
||||
)
|
||||
fps, robot_type, features = validate_all_metadata(all_metadata)
|
||||
video_keys = [key for key in features if features[key]["dtype"] == "video"]
|
||||
video_keys = [k for k, v in features.items() if v["dtype"] == "video"]
|
||||
|
||||
# Create resulting dataset folder
|
||||
aggr_meta = LeRobotDatasetMetadata.create(
|
||||
# Initialize output dataset metadata
|
||||
dst_meta = LeRobotDatasetMetadata.create(
|
||||
repo_id=aggr_repo_id,
|
||||
fps=fps,
|
||||
robot_type=robot_type,
|
||||
features=features,
|
||||
root=aggr_root,
|
||||
)
|
||||
aggr_root = aggr_meta.root
|
||||
|
||||
# Aggregate task info
|
||||
logging.info("Find all tasks")
|
||||
unique_tasks = pd.concat([meta.tasks for meta in all_metadata]).index.unique()
|
||||
aggr_meta.tasks = pd.DataFrame({"task_index": range(len(unique_tasks))}, index=unique_tasks)
|
||||
unique_tasks = pd.concat([m.tasks for m in all_metadata]).index.unique()
|
||||
dst_meta.tasks = pd.DataFrame({"task_index": range(len(unique_tasks))}, index=unique_tasks)
|
||||
|
||||
num_episodes = 0
|
||||
num_frames = 0
|
||||
# Track counters and indices
|
||||
meta_idx = {"chunk": 0, "file": 0}
|
||||
data_idx = {"chunk": 0, "file": 0}
|
||||
videos_idx = {
|
||||
key: {"chunk": 0, "file": 0, "latest_duration": 0, "episode_duration": 0} for key in video_keys
|
||||
}
|
||||
|
||||
aggr_meta_chunk_idx = 0
|
||||
aggr_meta_file_idx = 0
|
||||
# Process each dataset
|
||||
for src_meta in tqdm.tqdm(all_metadata, desc="Copy data and videos"):
|
||||
videos_idx = aggregate_videos(src_meta, dst_meta, videos_idx)
|
||||
data_idx = aggregate_data(src_meta, dst_meta, data_idx)
|
||||
meta_idx = aggregate_metadata(src_meta, dst_meta, meta_idx, data_idx, videos_idx, video_keys)
|
||||
|
||||
aggr_data_chunk_idx = 0
|
||||
aggr_data_file_idx = 0
|
||||
dst_meta.info["total_episodes"] += src_meta.total_episodes
|
||||
dst_meta.info["total_frames"] += src_meta.total_frames
|
||||
|
||||
aggr_videos_chunk_idx = dict.fromkeys(video_keys, 0)
|
||||
aggr_videos_file_idx = dict.fromkeys(video_keys, 0)
|
||||
finalize_aggregation(aggr_meta, all_metadata)
|
||||
logging.info("Aggregation complete.")
|
||||
|
||||
for meta in tqdm.tqdm(all_metadata, desc="Copy data and videos"):
|
||||
# Aggregate episodes meta data
|
||||
meta_chunk_file_ids = {
|
||||
(c, f)
|
||||
for c, f in zip(
|
||||
meta.episodes["meta/episodes/chunk_index"],
|
||||
meta.episodes["meta/episodes/file_index"],
|
||||
|
||||
# -------------------------------
|
||||
# Helper Functions
|
||||
# -------------------------------
|
||||
|
||||
|
||||
def aggregate_videos(src_meta, dst_meta, videos_idx):
|
||||
"""
|
||||
Aggregates video chunks from a dataset into the aggregated dataset folder.
|
||||
"""
|
||||
for key, video_idx in videos_idx.items():
|
||||
# Get unique (chunk, file) combinations
|
||||
unique_chunk_file_pairs = {
|
||||
(chunk, file)
|
||||
for chunk, file in zip(
|
||||
src_meta.episodes[f"videos/{key}/chunk_index"],
|
||||
src_meta.episodes[f"videos/{key}/file_index"],
|
||||
strict=False,
|
||||
)
|
||||
}
|
||||
for chunk_idx, file_idx in meta_chunk_file_ids:
|
||||
path = meta.root / DEFAULT_EPISODES_PATH.format(chunk_index=chunk_idx, file_index=file_idx)
|
||||
df = pd.read_parquet(path)
|
||||
df = update_meta_data(
|
||||
df,
|
||||
aggr_meta_chunk_idx,
|
||||
aggr_meta_file_idx,
|
||||
aggr_data_chunk_idx,
|
||||
aggr_data_file_idx,
|
||||
aggr_videos_chunk_idx,
|
||||
aggr_videos_file_idx,
|
||||
num_frames,
|
||||
|
||||
# Current target chunk/file index
|
||||
chunk_idx = video_idx["chunk_idx"]
|
||||
file_idx = video_idx["file_idx"]
|
||||
|
||||
for src_chunk_idx, src_file_idx in unique_chunk_file_pairs:
|
||||
src_path = src_meta.root / DEFAULT_VIDEO_PATH.format(
|
||||
video_key=key,
|
||||
chunk_index=src_chunk_idx,
|
||||
file_index=src_file_idx,
|
||||
)
|
||||
|
||||
aggr_path = aggr_root / DEFAULT_EPISODES_PATH.format(
|
||||
chunk_index=aggr_meta_chunk_idx, file_index=aggr_meta_file_idx
|
||||
dst_path = dst_meta.root / DEFAULT_VIDEO_PATH.format(
|
||||
video_key=key,
|
||||
chunk_index=chunk_idx,
|
||||
file_index=file_idx,
|
||||
)
|
||||
if not aggr_path.exists():
|
||||
aggr_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.to_parquet(aggr_path)
|
||||
else:
|
||||
size_in_mb = get_parquet_file_size_in_mb(path)
|
||||
aggr_size_in_mb = get_parquet_file_size_in_mb(aggr_path)
|
||||
|
||||
if aggr_size_in_mb + size_in_mb >= DEFAULT_DATA_FILE_SIZE_IN_MB:
|
||||
# Size limit is reached, prepare new parquet file
|
||||
aggr_meta_chunk_idx, aggr_meta_file_idx = update_chunk_file_indices(
|
||||
aggr_meta_chunk_idx, aggr_meta_file_idx, DEFAULT_CHUNK_SIZE
|
||||
)
|
||||
aggr_path = aggr_root / DEFAULT_EPISODES_PATH.format(
|
||||
chunk_index=aggr_meta_chunk_idx, file_index=aggr_meta_file_idx
|
||||
)
|
||||
aggr_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.to_parquet(aggr_path)
|
||||
else:
|
||||
# Update the existing parquet file with new rows
|
||||
aggr_df = pd.read_parquet(aggr_path)
|
||||
df = pd.concat([aggr_df, df], ignore_index=True)
|
||||
df.to_parquet(aggr_path)
|
||||
if not dst_path.exists():
|
||||
# First write to this destination file
|
||||
dst_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(str(src_path), str(dst_path))
|
||||
continue
|
||||
|
||||
# Aggregate videos if any
|
||||
for key in video_keys:
|
||||
video_chunk_file_ids = {
|
||||
(c, f)
|
||||
for c, f in zip(
|
||||
meta.episodes[f"videos/{key}/chunk_index"],
|
||||
meta.episodes[f"videos/{key}/file_index"],
|
||||
strict=False,
|
||||
)
|
||||
}
|
||||
for chunk_idx, file_idx in video_chunk_file_ids:
|
||||
path = meta.root / DEFAULT_VIDEO_PATH.format(
|
||||
video_key=key, chunk_index=chunk_idx, file_index=file_idx
|
||||
)
|
||||
aggr_path = aggr_root / DEFAULT_VIDEO_PATH.format(
|
||||
# Check file sizes before appending
|
||||
src_size = get_video_size_in_mb(src_path)
|
||||
dst_size = get_video_size_in_mb(dst_path)
|
||||
|
||||
if dst_size + src_size >= DEFAULT_VIDEO_FILE_SIZE_IN_MB:
|
||||
# Rotate to a new chunk/file
|
||||
chunk_idx, file_idx = update_chunk_file_indices(chunk_idx, file_idx, DEFAULT_CHUNK_SIZE)
|
||||
dst_path = dst_meta.root / DEFAULT_VIDEO_PATH.format(
|
||||
video_key=key,
|
||||
chunk_index=aggr_videos_chunk_idx[key],
|
||||
file_index=aggr_videos_file_idx[key],
|
||||
chunk_index=chunk_idx,
|
||||
file_index=file_idx,
|
||||
)
|
||||
if not aggr_path.exists():
|
||||
# First video
|
||||
aggr_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(str(path), str(aggr_path))
|
||||
else:
|
||||
size_in_mb = get_video_size_in_mb(path)
|
||||
aggr_size_in_mb = get_video_size_in_mb(aggr_path)
|
||||
|
||||
if aggr_size_in_mb + size_in_mb >= DEFAULT_VIDEO_FILE_SIZE_IN_MB:
|
||||
# Size limit is reached, prepare new parquet file
|
||||
aggr_videos_chunk_idx[key], aggr_videos_file_idx[key] = update_chunk_file_indices(
|
||||
aggr_videos_chunk_idx[key], aggr_videos_file_idx[key], DEFAULT_CHUNK_SIZE
|
||||
)
|
||||
aggr_path = aggr_root / DEFAULT_VIDEO_PATH.format(
|
||||
video_key=key,
|
||||
chunk_index=aggr_videos_chunk_idx[key],
|
||||
file_index=aggr_videos_file_idx[key],
|
||||
)
|
||||
aggr_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(str(path), str(aggr_path))
|
||||
else:
|
||||
# Update the existing parquet file with new rows
|
||||
concat_video_files(
|
||||
[aggr_path, path],
|
||||
aggr_root,
|
||||
key,
|
||||
aggr_videos_chunk_idx[key],
|
||||
aggr_videos_file_idx[key],
|
||||
)
|
||||
# copy_command = f"cp {video_path} {aggr_video_path} &"
|
||||
# subprocess.Popen(copy_command, shell=True)
|
||||
|
||||
# Aggregate data
|
||||
data_chunk_file_ids = {
|
||||
(c, f)
|
||||
for c, f in zip(meta.episodes["data/chunk_index"], meta.episodes["data/file_index"], strict=False)
|
||||
}
|
||||
for chunk_idx, file_idx in data_chunk_file_ids:
|
||||
path = meta.root / DEFAULT_DATA_PATH.format(chunk_index=chunk_idx, file_index=file_idx)
|
||||
df = pd.read_parquet(path)
|
||||
df = update_episode_frame_task(df, num_episodes, meta.tasks, aggr_meta.tasks, num_frames)
|
||||
|
||||
aggr_path = aggr_root / DEFAULT_DATA_PATH.format(
|
||||
chunk_index=aggr_data_chunk_idx, file_index=aggr_data_file_idx
|
||||
)
|
||||
if not aggr_path.exists():
|
||||
aggr_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.to_parquet(aggr_path)
|
||||
dst_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(str(src_path), str(dst_path))
|
||||
else:
|
||||
size_in_mb = get_parquet_file_size_in_mb(path)
|
||||
aggr_size_in_mb = get_parquet_file_size_in_mb(aggr_path)
|
||||
# Append to existing video file
|
||||
concat_video_files(
|
||||
[dst_path, src_path],
|
||||
dst_meta.root,
|
||||
key,
|
||||
chunk_idx,
|
||||
file_idx,
|
||||
)
|
||||
|
||||
if aggr_size_in_mb + size_in_mb >= DEFAULT_DATA_FILE_SIZE_IN_MB:
|
||||
# Size limit is reached, prepare new parquet file
|
||||
aggr_data_chunk_idx, aggr_data_file_idx = update_chunk_file_indices(
|
||||
aggr_data_chunk_idx, aggr_data_file_idx, DEFAULT_CHUNK_SIZE
|
||||
)
|
||||
aggr_path = aggr_root / DEFAULT_DATA_PATH.format(
|
||||
chunk_index=aggr_data_chunk_idx, file_index=aggr_data_file_idx
|
||||
)
|
||||
aggr_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.to_parquet(aggr_path)
|
||||
else:
|
||||
# Update the existing parquet file with new rows
|
||||
aggr_df = pd.read_parquet(aggr_path)
|
||||
df = pd.concat([aggr_df, df], ignore_index=True)
|
||||
df.to_parquet(aggr_path)
|
||||
# Update the video index tracking
|
||||
video_idx["chunk_idx"] = chunk_idx
|
||||
video_idx["file_idx"] = file_idx
|
||||
|
||||
num_episodes += meta.total_episodes
|
||||
num_frames += meta.total_frames
|
||||
return videos_idx
|
||||
|
||||
|
||||
def aggregate_data(src_meta, dst_meta, data_idx):
|
||||
unique_chunk_file_ids = {
|
||||
(c, f)
|
||||
for c, f in zip(
|
||||
src_meta.episodes["data/chunk_index"], src_meta.episodes["data/file_index"], strict=False
|
||||
)
|
||||
}
|
||||
for src_chunk_idx, src_file_idx in unique_chunk_file_ids:
|
||||
src_path = src_meta.root / DEFAULT_DATA_PATH.format(
|
||||
chunk_index=src_chunk_idx, file_index=src_file_idx
|
||||
)
|
||||
df = pd.read_parquet(src_path)
|
||||
df = update_data_df(df, src_meta, dst_meta)
|
||||
|
||||
dst_path = aggr_root / DEFAULT_DATA_PATH.format(
|
||||
chunk_index=data_idx["chunk"], file_index=data_idx["file"]
|
||||
)
|
||||
data_idx = write_parquet_safely(
|
||||
df,
|
||||
src_path,
|
||||
dst_path,
|
||||
data_idx,
|
||||
DEFAULT_DATA_FILE_SIZE_IN_MB,
|
||||
DEFAULT_CHUNK_SIZE,
|
||||
DEFAULT_DATA_PATH,
|
||||
)
|
||||
|
||||
return data_idx
|
||||
|
||||
|
||||
def aggregate_metadata(src_meta, dst_meta, meta_idx, data_idx, videos_idx):
|
||||
chunk_file_ids = {
|
||||
(c, f)
|
||||
for c, f in zip(
|
||||
src_meta.episodes["meta/episodes/chunk_index"],
|
||||
src_meta.episodes["meta/episodes/file_index"],
|
||||
strict=False,
|
||||
)
|
||||
}
|
||||
|
||||
for chunk_idx, file_idx in chunk_file_ids:
|
||||
src_path = src_meta.root / DEFAULT_EPISODES_PATH.format(chunk_index=chunk_idx, file_index=file_idx)
|
||||
df = pd.read_parquet(src_path)
|
||||
df = update_meta_data(
|
||||
df,
|
||||
dst_meta,
|
||||
meta_idx,
|
||||
data_idx,
|
||||
videos_idx,
|
||||
)
|
||||
|
||||
# for k in video_keys:
|
||||
# video_idx[k]["latest_duration"] += video_idx[k]["episode_duration"]
|
||||
|
||||
dst_path = dst_meta.root / DEFAULT_EPISODES_PATH.format(
|
||||
chunk_index=meta_idx["chunk"], file_index=meta_idx["file"]
|
||||
)
|
||||
write_parquet_safely(
|
||||
df,
|
||||
src_path,
|
||||
dst_path,
|
||||
meta_idx,
|
||||
DEFAULT_DATA_FILE_SIZE_IN_MB,
|
||||
DEFAULT_CHUNK_SIZE,
|
||||
DEFAULT_EPISODES_PATH,
|
||||
)
|
||||
|
||||
return meta_idx
|
||||
|
||||
|
||||
def write_parquet_safely(
|
||||
df: pd.DataFrame,
|
||||
src_path: Path,
|
||||
dst_path: Path,
|
||||
idx: dict[str, int],
|
||||
max_mb: float,
|
||||
chunk_size: int,
|
||||
default_path: str,
|
||||
):
|
||||
"""
|
||||
Safely appends or creates a Parquet file at dst_path based on size constraints.
|
||||
|
||||
Parameters:
|
||||
df (pd.DataFrame): Data to write.
|
||||
src_path (Path): Path to source file (used to get size).
|
||||
dst_path (Path): Target path for writing.
|
||||
idx (dict): Dictionary containing 'chunk' and 'file' indices.
|
||||
max_mb (float): Maximum allowed file size in MB.
|
||||
chunk_size (int): Maximum number of files per chunk.
|
||||
default_path (str): Format string for generating a new file path.
|
||||
|
||||
Returns:
|
||||
dict: Updated index dictionary.
|
||||
"""
|
||||
|
||||
# If destination file doesn't exist, just write the new one
|
||||
if not dst_path.exists():
|
||||
dst_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.to_parquet(dst_path)
|
||||
return idx
|
||||
|
||||
# Otherwise, check if we exceed the size limit
|
||||
src_size = get_parquet_file_size_in_mb(src_path)
|
||||
dst_size = get_parquet_file_size_in_mb(dst_path)
|
||||
|
||||
if dst_size + src_size >= max_mb:
|
||||
# File is too large, move to a new one
|
||||
idx["chunk"], idx["file"] = update_chunk_file_indices(idx["chunk"], idx["file"], chunk_size)
|
||||
new_path = dst_path.parent / default_path.format(chunk_index=idx["chunk"], file_index=idx["file"])
|
||||
new_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.to_parquet(new_path)
|
||||
else:
|
||||
# Append to existing file
|
||||
existing_df = pd.read_parquet(dst_path)
|
||||
combined_df = pd.concat([existing_df, df], ignore_index=True)
|
||||
combined_df.to_parquet(dst_path)
|
||||
|
||||
return idx
|
||||
|
||||
|
||||
def finalize_aggregation(aggr_meta, all_metadata):
|
||||
logging.info("write tasks")
|
||||
write_tasks(aggr_meta.tasks, aggr_meta.root)
|
||||
|
||||
logging.info("write info")
|
||||
aggr_meta.info["total_tasks"] = len(aggr_meta.tasks)
|
||||
aggr_meta.info["total_episodes"] = sum([meta.total_episodes for meta in all_metadata])
|
||||
aggr_meta.info["total_frames"] = sum([meta.total_frames for meta in all_metadata])
|
||||
aggr_meta.info["splits"] = {"train": f"0:{aggr_meta.total_episodes}"}
|
||||
aggr_meta.info.update(
|
||||
{
|
||||
"total_tasks": len(aggr_meta.tasks),
|
||||
"total_episodes": sum(m.total_episodes for m in all_metadata),
|
||||
"total_frames": sum(m.total_frames for m in all_metadata),
|
||||
"splits": {"train": f"0:{sum(m.total_episodes for m in all_metadata)}"},
|
||||
}
|
||||
)
|
||||
write_info(aggr_meta.info, aggr_meta.root)
|
||||
|
||||
logging.info("write stats")
|
||||
aggr_meta.stats = aggregate_stats([meta.stats for meta in all_metadata])
|
||||
aggr_meta.stats = aggregate_stats([m.stats for m in all_metadata])
|
||||
write_stats(aggr_meta.stats, aggr_meta.root)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
init_logging()
|
||||
aggr_repo_id = "cadene/aggregate_test"
|
||||
aggr_root = Path(f"/tmp/{aggr_repo_id}")
|
||||
|
||||
num_shards = 2048
|
||||
repo_id = "cadene/droid_1.0.1_v30"
|
||||
aggr_repo_id = f"{repo_id}_compact_6"
|
||||
tags = ["openx"]
|
||||
|
||||
# num_shards = 210
|
||||
# repo_id = "cadene/agibot_alpha_v30"
|
||||
# aggr_repo_id = f"{repo_id}"
|
||||
# tags = None
|
||||
|
||||
# aggr_root = Path(f"/tmp/{aggr_repo_id}")
|
||||
aggr_root = HF_LEROBOT_HOME / aggr_repo_id
|
||||
if aggr_root.exists():
|
||||
shutil.rmtree(aggr_root)
|
||||
|
||||
repo_ids = []
|
||||
roots = []
|
||||
for rank in range(num_shards):
|
||||
shard_repo_id = f"{repo_id}_world_{num_shards}_rank_{rank}"
|
||||
shard_root = HF_LEROBOT_HOME / shard_repo_id
|
||||
try:
|
||||
meta = LeRobotDatasetMetadata(shard_repo_id, root=shard_root)
|
||||
if len(meta.video_keys) == 0:
|
||||
continue
|
||||
repo_ids.append(shard_repo_id)
|
||||
roots.append(shard_root)
|
||||
except:
|
||||
pass
|
||||
|
||||
if rank == 1:
|
||||
break
|
||||
|
||||
aggregate_datasets(
|
||||
["lerobot/aloha_sim_transfer_cube_human", "lerobot/aloha_sim_insertion_human"],
|
||||
repo_ids,
|
||||
aggr_repo_id,
|
||||
roots=roots,
|
||||
aggr_root=aggr_root,
|
||||
)
|
||||
|
||||
aggr_dataset = LeRobotDataset(repo_id=aggr_repo_id, root=aggr_root)
|
||||
|
||||
for i in tqdm.tqdm(range(len(aggr_dataset))):
|
||||
aggr_dataset[i]
|
||||
pass
|
||||
|
||||
aggr_dataset.push_to_hub(tags=["openx"])
|
||||
# for i in tqdm.tqdm(range(len(aggr_dataset))):
|
||||
# aggr_dataset[i]
|
||||
# pass
|
||||
aggr_dataset.push_to_hub(tags=tags, upload_large_folder=True)
|
||||
|
||||
@@ -31,7 +31,7 @@ from datasets import Dataset
|
||||
from huggingface_hub import HfApi, snapshot_download
|
||||
from huggingface_hub.constants import REPOCARD_NAME
|
||||
from huggingface_hub.errors import RevisionNotFoundError
|
||||
|
||||
from torch.profiler import record_function
|
||||
from lerobot.common.constants import HF_LEROBOT_HOME
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats, compute_episode_stats
|
||||
from lerobot.common.datasets.image_writer import AsyncImageWriter, write_image
|
||||
|
||||
Reference in New Issue
Block a user