forked from tangger/lerobot
Refactor to have dynamixel_calibration and feetech_calibration
This commit is contained in:
187
examples/10_use_so100.md
Normal file
187
examples/10_use_so100.md
Normal file
@@ -0,0 +1,187 @@
|
||||
This tutorial explains how to use [SO-100](https://github.com/TheRobotStudio/SO-ARM100) with LeRobot.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with link to source the parts, as well as the instructions to 3D print the parts, and advices if it's your first time printing or if you don't own a 3D printer already.
|
||||
|
||||
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's install LeRobot. We will next provide a tutorial for assembly.
|
||||
|
||||
## Install LeRobot
|
||||
|
||||
On your computer:
|
||||
|
||||
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
|
||||
```bash
|
||||
mkdir -p ~/miniconda3
|
||||
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
|
||||
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
|
||||
rm ~/miniconda3/miniconda.sh
|
||||
~/miniconda3/bin/conda init bash
|
||||
```
|
||||
|
||||
2. Restart shell or `source ~/.bashrc`
|
||||
|
||||
3. Create and activate a fresh conda environment for lerobot
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10 && conda activate lerobot
|
||||
```
|
||||
|
||||
4. Clone LeRobot:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||
```
|
||||
|
||||
5. Install LeRobot with dependencies for the feetech motors:
|
||||
```bash
|
||||
cd ~/lerobot && pip install -e ".[feetech]"
|
||||
```
|
||||
|
||||
For Linux only (not Mac), install extra dependencies for recording datasets:
|
||||
```bash
|
||||
conda install -y -c conda-forge ffmpeg
|
||||
pip uninstall -y opencv-python
|
||||
conda install -y -c conda-forge "opencv>=4.10.0"
|
||||
```
|
||||
|
||||
## Configure the motors
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
```
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 1
|
||||
```
|
||||
|
||||
## Assemble the arms
|
||||
|
||||
TODO
|
||||
|
||||
## Calibrate
|
||||
|
||||
|
||||
## Teleoperate
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py teleoperate \
|
||||
--robot-path lerobot/configs/robot/so100.yaml \
|
||||
--robot-overrides '~cameras' \
|
||||
--display-cameras 0
|
||||
```
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py teleoperate \
|
||||
--robot-path lerobot/configs/robot/so100.yaml
|
||||
```
|
||||
|
||||
## Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with so100.
|
||||
|
||||
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Store your Hugging Face repository name in a variable to run these commands:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Record 2 episodes and upload your dataset to the hub:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py record \
|
||||
--robot-path lerobot/configs/robot/so100.yaml \
|
||||
--fps 30 \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/so100_test \
|
||||
--tags so100 tutorial \
|
||||
--warmup-time-s 5 \
|
||||
--episode-time-s 40 \
|
||||
--reset-time-s 10 \
|
||||
--num-episodes 2 \
|
||||
--push-to-hub 1
|
||||
```
|
||||
|
||||
## Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--push-to-hub 1`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
echo ${HF_USER}/so100_test
|
||||
```
|
||||
|
||||
If you didn't upload with `--push-to-hub 0`, you can also visualize it locally with:
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/so100_test
|
||||
```
|
||||
|
||||
## Replay an episode
|
||||
|
||||
Now try to replay the first episode on your robot:
|
||||
```bash
|
||||
DATA_DIR=data python lerobot/scripts/control_robot.py replay \
|
||||
--robot-path lerobot/configs/robot/so100.yaml \
|
||||
--fps 30 \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/so100_test \
|
||||
--episode 0
|
||||
```
|
||||
|
||||
## Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
DATA_DIR=data python lerobot/scripts/train.py \
|
||||
dataset_repo_id=${HF_USER}/so100_test \
|
||||
policy=act_so100_real \
|
||||
env=so100_real \
|
||||
hydra.run.dir=outputs/train/act_so100_test \
|
||||
hydra.job.name=act_so100_test \
|
||||
device=cuda \
|
||||
wandb.enable=true
|
||||
```
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `dataset_repo_id=${HF_USER}/so100_test`.
|
||||
2. We provided the policy with `policy=act_so100_real`. This loads configurations from [`lerobot/configs/policy/act_so100_real.yaml`](../lerobot/configs/policy/act_so100_real.yaml). Importantly, this policy uses 2 cameras as input `laptop`, `phone`.
|
||||
3. We provided an environment as argument with `env=so100_real`. This loads configurations from [`lerobot/configs/env/so100_real.yaml`](../lerobot/configs/env/so100_real.yaml).
|
||||
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you can also use `device=mps` if you are using a Mac with Apple silicon, or `device=cpu` otherwise.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
6. We added `DATA_DIR=data` to access your dataset stored in your local `data` directory. If you dont provide `DATA_DIR`, your dataset will be downloaded from Hugging Face hub to your cache folder `$HOME/.cache/hugginface`. In future versions of `lerobot`, both directories will be in sync.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.
|
||||
|
||||
## Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py record \
|
||||
--robot-path lerobot/configs/robot/so100.yaml \
|
||||
--fps 30 \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/eval_act_so100_test \
|
||||
--tags so100 tutorial eval \
|
||||
--warmup-time-s 5 \
|
||||
--episode-time-s 40 \
|
||||
--reset-time-s 10 \
|
||||
--num-episodes 10 \
|
||||
-p outputs/train/act_so100_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `-p` argument which indicates the path to your policy checkpoint with (e.g. `-p outputs/train/eval_so100_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `-p ${HF_USER}/act_so100_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `--repo-id ${HF_USER}/eval_act_so100_test`).
|
||||
|
||||
## More
|
||||
|
||||
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth explaination.
|
||||
|
||||
If you have any question or need help, please reach out on Discord in the channel `#so100-arm`.
|
||||
@@ -78,7 +78,7 @@ To begin, create two instances of the [`DynamixelMotorsBus`](../lerobot/common/
|
||||
|
||||
To find the correct ports for each arm, run the utility script twice:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/motors/dynamixel.py
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
```
|
||||
|
||||
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
|
||||
|
||||
@@ -50,7 +50,7 @@ cd ~/lerobot && pip install -e ".[stretch]"
|
||||
|
||||
> **Note:** If you get this message, you can ignore it: `ERROR: pip's dependency resolver does not currently take into account all the packages that are installed.`
|
||||
|
||||
And install extra dependencies for recording datasets on Linux:
|
||||
For Linux only (not Mac), install extra dependencies for recording datasets:
|
||||
```bash
|
||||
conda install -y -c conda-forge ffmpeg
|
||||
pip uninstall -y opencv-python
|
||||
|
||||
@@ -35,7 +35,7 @@ git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||
cd ~/lerobot && pip install -e ".[dynamixel intelrealsense]"
|
||||
```
|
||||
|
||||
And install extra dependencies for recording datasets on Linux:
|
||||
For Linux only (not Mac), install extra dependencies for recording datasets:
|
||||
```bash
|
||||
conda install -y -c conda-forge ffmpeg
|
||||
pip uninstall -y opencv-python
|
||||
|
||||
@@ -260,7 +260,7 @@ class DynamixelMotorsBus:
|
||||
A DynamixelMotorsBus instance requires a port (e.g. `DynamixelMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
|
||||
To find the port, you can run our utility script:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/motors/dynamixel.py
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
>>> Finding all available ports for the DynamixelMotorsBus.
|
||||
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
>>> Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
|
||||
@@ -339,7 +339,7 @@ class DynamixelMotorsBus:
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
print(
|
||||
"\nTry running `python lerobot/common/robot_devices/motors/dynamixel.py` to make sure you are using the correct port.\n"
|
||||
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
@@ -45,6 +45,8 @@ UPPER_BOUND_LINEAR = 110
|
||||
HALF_TURN_DEGREE = 180
|
||||
|
||||
|
||||
# See this link for STS3215 Memory Table:
|
||||
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
|
||||
# data_name: (address, size_byte)
|
||||
SCS_SERIES_CONTROL_TABLE = {
|
||||
"Model": (3, 2),
|
||||
@@ -325,7 +327,7 @@ class FeetechMotorsBus:
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
print(
|
||||
"\nTry running `python lerobot/common/robot_devices/motors/feetech.py` to make sure you are using the correct port.\n"
|
||||
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
|
||||
)
|
||||
raise
|
||||
|
||||
@@ -740,8 +742,6 @@ class FeetechMotorsBus:
|
||||
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
|
||||
values = values.astype(np.int32)
|
||||
|
||||
print(values)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED:
|
||||
values = self.avoid_rotation_reset(values, motor_names, data_name)
|
||||
|
||||
|
||||
131
lerobot/common/robot_devices/robots/dynamixel_calibration.py
Normal file
131
lerobot/common/robot_devices/robots/dynamixel_calibration.py
Normal file
@@ -0,0 +1,131 @@
|
||||
"""Logic to calibrate a robot arm built with dynamixel motors"""
|
||||
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.robot_devices.motors.dynamixel import (
|
||||
CalibrationMode,
|
||||
TorqueMode,
|
||||
convert_degrees_to_steps,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
|
||||
URL_TEMPLATE = (
|
||||
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
)
|
||||
|
||||
# The following positions are provided in nominal degree range ]-180, +180[
|
||||
# For more info on these constants, see comments in the code where they get used.
|
||||
ZERO_POSITION_DEGREE = 0
|
||||
ROTATED_POSITION_DEGREE = 90
|
||||
|
||||
|
||||
def assert_drive_mode(drive_mode):
|
||||
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
|
||||
if not np.all(np.isin(drive_mode, [0, 1])):
|
||||
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
|
||||
|
||||
|
||||
def apply_drive_mode(position, drive_mode):
|
||||
assert_drive_mode(drive_mode)
|
||||
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
|
||||
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
|
||||
signed_drive_mode = -(drive_mode * 2 - 1)
|
||||
position *= signed_drive_mode
|
||||
return position
|
||||
|
||||
|
||||
def compute_nearest_rounded_position(position, models):
|
||||
# delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
|
||||
# nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
|
||||
# return nearest_pos.astype(position.dtype)
|
||||
return position
|
||||
|
||||
|
||||
def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""This function ensures that a neural network trained on data collected on a given robot
|
||||
can work on another robot. For instance before calibration, setting a same goal position
|
||||
for each motor of two different robots will get two very different positions. But after calibration,
|
||||
the two robots will move to the same position.To this end, this function computes the homing offset
|
||||
and the drive mode for each motor of a given robot.
|
||||
|
||||
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
|
||||
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
|
||||
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
|
||||
|
||||
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
|
||||
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
|
||||
to the "rotated position".
|
||||
|
||||
After calibration, the homing offsets and drive modes are stored in a cache.
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
run_arm_calibration(arm, "koch", "left", "follower")
|
||||
```
|
||||
"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to zero position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
|
||||
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
|
||||
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
|
||||
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
|
||||
zero_pos = arm.read("Present_Position")
|
||||
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
|
||||
homing_offset = zero_target_pos - zero_nearest_pos
|
||||
|
||||
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
|
||||
# This allows to identify the rotation direction of each motor.
|
||||
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
||||
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
||||
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
|
||||
# of the previous motor in the kinetic chain.
|
||||
print("\nMove arm to rotated target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Find drive mode by rotating each motor by a quarter of a turn.
|
||||
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
|
||||
rotated_pos = arm.read("Present_Position")
|
||||
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
|
||||
|
||||
# Re-compute homing offset to take into account drive mode
|
||||
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
|
||||
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
|
||||
homing_offset = rotated_target_pos - rotated_nearest_pos
|
||||
|
||||
print("\nMove arm to rest position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
|
||||
input("Press Enter to continue...")
|
||||
print()
|
||||
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
|
||||
|
||||
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
|
||||
if robot_type in ["aloha"] and "gripper" in arm.motor_names:
|
||||
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
|
||||
calib_idx = arm.motor_names.index("gripper")
|
||||
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
|
||||
|
||||
calib_data = {
|
||||
"homing_offset": homing_offset.tolist(),
|
||||
"drive_mode": drive_mode.tolist(),
|
||||
"start_pos": zero_pos.tolist(),
|
||||
"end_pos": rotated_pos.tolist(),
|
||||
"calib_mode": calib_mode,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
return calib_data
|
||||
131
lerobot/common/robot_devices/robots/feetech_calibration.py
Normal file
131
lerobot/common/robot_devices/robots/feetech_calibration.py
Normal file
@@ -0,0 +1,131 @@
|
||||
"""Logic to calibrate a robot arm built with feetech motors"""
|
||||
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.robot_devices.motors.feetech import (
|
||||
CalibrationMode,
|
||||
TorqueMode,
|
||||
convert_degrees_to_steps,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
|
||||
URL_TEMPLATE = (
|
||||
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
)
|
||||
|
||||
# The following positions are provided in nominal degree range ]-180, +180[
|
||||
# For more info on these constants, see comments in the code where they get used.
|
||||
ZERO_POSITION_DEGREE = 0
|
||||
ROTATED_POSITION_DEGREE = 90
|
||||
|
||||
|
||||
def assert_drive_mode(drive_mode):
|
||||
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
|
||||
if not np.all(np.isin(drive_mode, [0, 1])):
|
||||
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
|
||||
|
||||
|
||||
def apply_drive_mode(position, drive_mode):
|
||||
assert_drive_mode(drive_mode)
|
||||
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
|
||||
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
|
||||
signed_drive_mode = -(drive_mode * 2 - 1)
|
||||
position *= signed_drive_mode
|
||||
return position
|
||||
|
||||
|
||||
def compute_nearest_rounded_position(position, models):
|
||||
# delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
|
||||
# nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
|
||||
# return nearest_pos.astype(position.dtype)
|
||||
return position
|
||||
|
||||
|
||||
def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""This function ensures that a neural network trained on data collected on a given robot
|
||||
can work on another robot. For instance before calibration, setting a same goal position
|
||||
for each motor of two different robots will get two very different positions. But after calibration,
|
||||
the two robots will move to the same position.To this end, this function computes the homing offset
|
||||
and the drive mode for each motor of a given robot.
|
||||
|
||||
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
|
||||
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
|
||||
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
|
||||
|
||||
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
|
||||
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
|
||||
to the "rotated position".
|
||||
|
||||
After calibration, the homing offsets and drive modes are stored in a cache.
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
run_arm_calibration(arm, "koch", "left", "follower")
|
||||
```
|
||||
"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to zero position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
|
||||
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
|
||||
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
|
||||
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
|
||||
zero_pos = arm.read("Present_Position")
|
||||
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
|
||||
homing_offset = zero_target_pos - zero_nearest_pos
|
||||
|
||||
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
|
||||
# This allows to identify the rotation direction of each motor.
|
||||
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
||||
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
||||
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
|
||||
# of the previous motor in the kinetic chain.
|
||||
print("\nMove arm to rotated target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Find drive mode by rotating each motor by a quarter of a turn.
|
||||
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
|
||||
rotated_pos = arm.read("Present_Position")
|
||||
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
|
||||
|
||||
# Re-compute homing offset to take into account drive mode
|
||||
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
|
||||
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
|
||||
homing_offset = rotated_target_pos - rotated_nearest_pos
|
||||
|
||||
print("\nMove arm to rest position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
|
||||
input("Press Enter to continue...")
|
||||
print()
|
||||
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
|
||||
|
||||
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
|
||||
if robot_type in ["so100", "moss"] and "gripper" in arm.motor_names:
|
||||
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
|
||||
calib_idx = arm.motor_names.index("gripper")
|
||||
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
|
||||
|
||||
calib_data = {
|
||||
"homing_offset": homing_offset.tolist(),
|
||||
"drive_mode": drive_mode.tolist(),
|
||||
"start_pos": zero_pos.tolist(),
|
||||
"end_pos": rotated_pos.tolist(),
|
||||
"calib_mode": calib_mode,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
return calib_data
|
||||
@@ -1,3 +1,9 @@
|
||||
"""Contains logic to instantiate a robot, read information from its motors and cameras,
|
||||
and send orders to its motors.
|
||||
"""
|
||||
# TODO(rcadene, aliberts): reorganize the codebase into one file per robot, with the associated
|
||||
# calibration procedure, to make it easy for people to add their own robot.
|
||||
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
@@ -10,139 +16,10 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
from lerobot.common.robot_devices.cameras.utils import Camera
|
||||
from lerobot.common.robot_devices.motors.feetech import (
|
||||
CalibrationMode,
|
||||
TorqueMode,
|
||||
convert_degrees_to_steps,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
from lerobot.common.robot_devices.robots.utils import get_arm_id
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
|
||||
########################################################################
|
||||
# Calibration logic
|
||||
########################################################################
|
||||
|
||||
URL_TEMPLATE = (
|
||||
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
)
|
||||
|
||||
# The following positions are provided in nominal degree range ]-180, +180[
|
||||
# For more info on these constants, see comments in the code where they get used.
|
||||
ZERO_POSITION_DEGREE = 0
|
||||
ROTATED_POSITION_DEGREE = 90
|
||||
|
||||
|
||||
def assert_drive_mode(drive_mode):
|
||||
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
|
||||
if not np.all(np.isin(drive_mode, [0, 1])):
|
||||
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
|
||||
|
||||
|
||||
def apply_drive_mode(position, drive_mode):
|
||||
assert_drive_mode(drive_mode)
|
||||
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
|
||||
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
|
||||
signed_drive_mode = -(drive_mode * 2 - 1)
|
||||
position *= signed_drive_mode
|
||||
return position
|
||||
|
||||
|
||||
def compute_nearest_rounded_position(position, models):
|
||||
# delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
|
||||
# nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
|
||||
# return nearest_pos.astype(position.dtype)
|
||||
return position
|
||||
|
||||
|
||||
def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""This function ensures that a neural network trained on data collected on a given robot
|
||||
can work on another robot. For instance before calibration, setting a same goal position
|
||||
for each motor of two different robots will get two very different positions. But after calibration,
|
||||
the two robots will move to the same position.To this end, this function computes the homing offset
|
||||
and the drive mode for each motor of a given robot.
|
||||
|
||||
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
|
||||
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
|
||||
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
|
||||
|
||||
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
|
||||
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
|
||||
to the "rotated position".
|
||||
|
||||
After calibration, the homing offsets and drive modes are stored in a cache.
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
run_arm_calibration(arm, "koch", "left", "follower")
|
||||
```
|
||||
"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to zero position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
|
||||
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
|
||||
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
|
||||
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
|
||||
zero_pos = arm.read("Present_Position")
|
||||
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
|
||||
homing_offset = zero_target_pos - zero_nearest_pos
|
||||
|
||||
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
|
||||
# This allows to identify the rotation direction of each motor.
|
||||
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
||||
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
||||
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
|
||||
# of the previous motor in the kinetic chain.
|
||||
print("\nMove arm to rotated target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Find drive mode by rotating each motor by a quarter of a turn.
|
||||
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
|
||||
rotated_pos = arm.read("Present_Position")
|
||||
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
|
||||
|
||||
# Re-compute homing offset to take into account drive mode
|
||||
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
|
||||
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
|
||||
homing_offset = rotated_target_pos - rotated_nearest_pos
|
||||
|
||||
print("\nMove arm to rest position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
|
||||
input("Press Enter to continue...")
|
||||
print()
|
||||
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
|
||||
|
||||
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
|
||||
if robot_type in ["aloha", "so_100"] and "gripper" in arm.motor_names:
|
||||
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
|
||||
calib_idx = arm.motor_names.index("gripper")
|
||||
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
|
||||
|
||||
calib_data = {
|
||||
"homing_offset": homing_offset.tolist(),
|
||||
"drive_mode": drive_mode.tolist(),
|
||||
"start_pos": zero_pos.tolist(),
|
||||
"end_pos": rotated_pos.tolist(),
|
||||
"calib_mode": calib_mode,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
return calib_data
|
||||
|
||||
|
||||
def ensure_safe_goal_position(
|
||||
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
|
||||
@@ -164,11 +41,6 @@ def ensure_safe_goal_position(
|
||||
return safe_goal_pos
|
||||
|
||||
|
||||
########################################################################
|
||||
# Manipulator robot
|
||||
########################################################################
|
||||
|
||||
|
||||
@dataclass
|
||||
class ManipulatorRobotConfig:
|
||||
"""
|
||||
@@ -179,7 +51,7 @@ class ManipulatorRobotConfig:
|
||||
"""
|
||||
|
||||
# Define all components of the robot
|
||||
robot_type: str | None = None
|
||||
robot_type: str = "koch"
|
||||
leader_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
|
||||
follower_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
|
||||
cameras: dict[str, Camera] = field(default_factory=lambda: {})
|
||||
@@ -208,6 +80,10 @@ class ManipulatorRobotConfig:
|
||||
)
|
||||
super().__setattr__(prop, val)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.robot_type not in ["koch", "aloha", "so100", "moss"]:
|
||||
raise ValueError(f"Provided robot type ({self.robot_type}) is not supported.")
|
||||
|
||||
|
||||
class ManipulatorRobot:
|
||||
# TODO(rcadene): Implement force feedback
|
||||
@@ -388,6 +264,11 @@ class ManipulatorRobot:
|
||||
print(f"Connecting {name} leader arm.")
|
||||
self.leader_arms[name].connect()
|
||||
|
||||
if self.robot_type in ["koch", "aloha"]:
|
||||
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
|
||||
elif self.robot_type in ["so100", "moss"]:
|
||||
from lerobot.common.robot_devices.motors.feetech import TorqueMode
|
||||
|
||||
# We assume that at connection time, arms are in a rest position, and torque can
|
||||
# be safely disabled to run calibration and/or set robot preset configurations.
|
||||
for name in self.follower_arms:
|
||||
@@ -402,10 +283,8 @@ class ManipulatorRobot:
|
||||
self.set_koch_robot_preset()
|
||||
elif self.robot_type == "aloha":
|
||||
self.set_aloha_robot_preset()
|
||||
elif self.robot_type == "so_100":
|
||||
self.set_so_100_robot_preset()
|
||||
else:
|
||||
warnings.warn(f"No preset found for robot type: {self.robot_type}", stacklevel=1)
|
||||
elif self.robot_type in ["so100", "moss"]:
|
||||
self.set_so100_robot_preset()
|
||||
|
||||
# Enable torque on all motors of the follower arms
|
||||
for name in self.follower_arms:
|
||||
@@ -413,6 +292,10 @@ class ManipulatorRobot:
|
||||
self.follower_arms[name].write("Torque_Enable", 1)
|
||||
|
||||
if self.config.gripper_open_degree is not None:
|
||||
if self.robot_type in ["aloha", "so100", "moss"]:
|
||||
raise NotImplementedError(
|
||||
f"{self.robot_type} does not support position AND current control in the handle, which is require to set the gripper open."
|
||||
)
|
||||
# Set the leader arm in torque mode with the gripper motor set to an angle. This makes it possible
|
||||
# to squeeze the gripper and have it spring back to an open position on its own.
|
||||
for name in self.leader_arms:
|
||||
@@ -446,6 +329,12 @@ class ManipulatorRobot:
|
||||
calibration = json.load(f)
|
||||
else:
|
||||
print(f"Missing calibration file '{arm_calib_path}'")
|
||||
|
||||
if self.robot_type in ["koch", "aloha"]:
|
||||
from lerobot.common.robot_devices.robots.dynamixel_calibration import run_arm_calibration
|
||||
elif self.robot_type in ["so100", "moss"]:
|
||||
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_calibration
|
||||
|
||||
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
|
||||
|
||||
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
|
||||
@@ -464,6 +353,8 @@ class ManipulatorRobot:
|
||||
|
||||
def set_koch_robot_preset(self):
|
||||
def set_operating_mode_(arm):
|
||||
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
|
||||
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
|
||||
|
||||
@@ -551,24 +442,21 @@ class ManipulatorRobot:
|
||||
stacklevel=1,
|
||||
)
|
||||
|
||||
def set_so_100_robot_preset(self):
|
||||
def set_so100_robot_preset(self):
|
||||
for name in self.follower_arms:
|
||||
# Mode=0 for Position Control
|
||||
self.follower_arms[name].write("Mode", 0)
|
||||
# self.follower_arms[name].write("P_Coefficient", 255, "shoulder_pan")
|
||||
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
|
||||
self.follower_arms[name].write("P_Coefficient", 16, "shoulder_pan")
|
||||
# self.follower_arms[name].write("D_Coefficient", 230, "shoulder_pan")
|
||||
# Set I_Coefficient and D_Coefficient to default value 0 and 32
|
||||
self.follower_arms[name].write("I_Coefficient", 0, "shoulder_pan")
|
||||
self.follower_arms[name].write("D_Coefficient", 32, "shoulder_pan")
|
||||
# self.follower_arms[name].write("Acceleration", 0)
|
||||
# self.follower_arms[name].write("Minimum_Startup_Force", 0)
|
||||
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
|
||||
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
|
||||
self.follower_arms[name].write("Lock", 0)
|
||||
# self.follower_arms[name].write("Maximum_Acceleration", 250)
|
||||
self.follower_arms[name].write("Maximum_Acceleration", 150)
|
||||
|
||||
# for name in self.leader_arms:
|
||||
# self.leader_arms[name].write("Max_Torque_Limit", 50, "gripper")
|
||||
# self.leader_arms[name].write("Torque_Limit", 1000, "gripper")
|
||||
# self.leader_arms[name].write("Torque_Enable", 1, "gripper")
|
||||
# self.leader_arms[name].write("Goal_Position", 2048, "gripper")
|
||||
# Set Maximum_Acceleration to 250 to speedup acceleration and deceleration of
|
||||
# the motors. Note: this configuration is not in the official STS3215 Memory Table
|
||||
self.follower_arms[name].write("Maximum_Acceleration", 250)
|
||||
|
||||
def teleop_step(
|
||||
self, record_data=False
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
# Aloha: A Low-Cost Hardware for Bimanual Teleoperation
|
||||
# [Aloha: A Low-Cost Hardware for Bimanual Teleoperation](https://www.trossenrobotics.com/aloha-stationary)
|
||||
# https://aloha-2.github.io
|
||||
# https://www.trossenrobotics.com/aloha-stationary
|
||||
|
||||
# Requires installing extras packages
|
||||
# With pip: `pip install -e ".[dynamixel intelrealsense]"`
|
||||
# With poetry: `poetry install --sync --extras "dynamixel intelrealsense"`
|
||||
|
||||
# See [tutorial](https://github.com/huggingface/lerobot/blob/main/examples/9_use_aloha.md)
|
||||
|
||||
|
||||
_target_: lerobot.common.robot_devices.robots.manipulator.ManipulatorRobot
|
||||
robot_type: aloha
|
||||
# Specific to Aloha, LeRobot comes with default calibration files. Assuming the motors have been
|
||||
|
||||
@@ -1,6 +1,14 @@
|
||||
# [Moss v1 robot arm](https://github.com/jess-moss/moss-robot-arms)
|
||||
|
||||
# Requires installing extras packages
|
||||
# With pip: `pip install -e ".[feetech]"`
|
||||
# With poetry: `poetry install --sync --extras "feetech"`
|
||||
|
||||
# See [tutorial](https://github.com/huggingface/lerobot/blob/main/examples/11_use_moss.md)
|
||||
|
||||
_target_: lerobot.common.robot_devices.robots.manipulator.ManipulatorRobot
|
||||
robot_type: so_100
|
||||
calibration_dir: .cache/calibration/so_100
|
||||
robot_type: moss
|
||||
calibration_dir: .cache/calibration/moss
|
||||
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
@@ -46,8 +54,3 @@ cameras:
|
||||
fps: 30
|
||||
width: 640
|
||||
height: 480
|
||||
|
||||
# ~ Koch specific settings ~
|
||||
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
|
||||
# to squeeze the gripper and have it spring back to an open position on its own.
|
||||
# gripper_open_degree: 35.156
|
||||
56
lerobot/configs/robot/so100.yaml
Normal file
56
lerobot/configs/robot/so100.yaml
Normal file
@@ -0,0 +1,56 @@
|
||||
# [SO-100 robot arm](https://github.com/TheRobotStudio/SO-ARM100)
|
||||
|
||||
# Requires installing extras packages
|
||||
# With pip: `pip install -e ".[feetech]"`
|
||||
# With poetry: `poetry install --sync --extras "feetech"`
|
||||
|
||||
# See [tutorial](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md)
|
||||
|
||||
_target_: lerobot.common.robot_devices.robots.manipulator.ManipulatorRobot
|
||||
robot_type: so100
|
||||
calibration_dir: .cache/calibration/so100
|
||||
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: null
|
||||
|
||||
leader_arms:
|
||||
main:
|
||||
_target_: lerobot.common.robot_devices.motors.feetech.FeetechMotorsBus
|
||||
port: /dev/tty.usbmodem585A0077581
|
||||
motors:
|
||||
# name: (index, model)
|
||||
shoulder_pan: [1, "sts3215"]
|
||||
shoulder_lift: [2, "sts3215"]
|
||||
elbow_flex: [3, "sts3215"]
|
||||
wrist_flex: [4, "sts3215"]
|
||||
wrist_roll: [5, "sts3215"]
|
||||
gripper: [6, "sts3215"]
|
||||
|
||||
follower_arms:
|
||||
main:
|
||||
_target_: lerobot.common.robot_devices.motors.feetech.FeetechMotorsBus
|
||||
port: /dev/tty.usbmodem585A0080971
|
||||
motors:
|
||||
# name: (index, model)
|
||||
shoulder_pan: [1, "sts3215"]
|
||||
shoulder_lift: [2, "sts3215"]
|
||||
elbow_flex: [3, "sts3215"]
|
||||
wrist_flex: [4, "sts3215"]
|
||||
wrist_roll: [5, "sts3215"]
|
||||
gripper: [6, "sts3215"]
|
||||
|
||||
cameras:
|
||||
laptop:
|
||||
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
|
||||
camera_index: 0
|
||||
fps: 30
|
||||
width: 640
|
||||
height: 480
|
||||
phone:
|
||||
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
|
||||
camera_index: 1
|
||||
fps: 30
|
||||
width: 640
|
||||
height: 480
|
||||
@@ -1,3 +1,12 @@
|
||||
# [Stretch3 from Hello Robot](https://hello-robot.com/stretch-3-product)
|
||||
|
||||
# Requires installing extras packages
|
||||
# With pip: `pip install -e ".[stretch]"`
|
||||
# With poetry: `poetry install --sync --extras "stretch"`
|
||||
|
||||
# See [tutorial](https://github.com/huggingface/lerobot/blob/main/examples/8_use_stretch.md)
|
||||
|
||||
|
||||
_target_: lerobot.common.robot_devices.robots.stretch.StretchRobot
|
||||
robot_type: stretch3
|
||||
|
||||
|
||||
@@ -18,26 +18,26 @@ import time
|
||||
|
||||
def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
|
||||
if brand == "feetech":
|
||||
from lerobot.common.robot_devices.motors.feetech import MODEL_BAUDRATE_TABLE as model_baud_rate_table
|
||||
from lerobot.common.robot_devices.motors.feetech import NUM_WRITE_RETRY as num_write_retry
|
||||
from lerobot.common.robot_devices.motors.feetech import SCS_SERIES_BAUDRATE_TABLE as baudrate_table
|
||||
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus as motor_bus_class
|
||||
elif brand == "dynamixel":
|
||||
from lerobot.common.robot_devices.motors.dynamixel import (
|
||||
MODEL_BAUDRATE_TABLE as model_baud_rate_table,
|
||||
from lerobot.common.robot_devices.motors.feetech import MODEL_BAUDRATE_TABLE, NUM_WRITE_RETRY
|
||||
from lerobot.common.robot_devices.motors.feetech import (
|
||||
SCS_SERIES_BAUDRATE_TABLE as SERIES_BAUDRATE_TABLE,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.dynamixel import NUM_WRITE_RETRY as num_write_retry
|
||||
from lerobot.common.robot_devices.motors.dynamixel import X_SERIES_BAUDRATE_TABLE as baudrate_table
|
||||
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus as motor_bus_class
|
||||
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus as MotorsBusClass
|
||||
elif brand == "dynamixel":
|
||||
from lerobot.common.robot_devices.motors.dynamixel import MODEL_BAUDRATE_TABLE, NUM_WRITE_RETRY
|
||||
from lerobot.common.robot_devices.motors.dynamixel import (
|
||||
X_SERIES_BAUDRATE_TABLE as SERIES_BAUDRATE_TABLE,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus as MotorsBusClass
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Currently we do not support this motor brand: {brand}. We currently support feetech and dynamixel motors."
|
||||
)
|
||||
|
||||
# Check if the provided model exists in the model_baud_rate_table
|
||||
if model not in model_baud_rate_table:
|
||||
if model not in MODEL_BAUDRATE_TABLE:
|
||||
raise ValueError(
|
||||
f"Invalid model '{model}' for brand '{brand}'. Supported models: {list(model_baud_rate_table.keys())}"
|
||||
f"Invalid model '{model}' for brand '{brand}'. Supported models: {list(MODEL_BAUDRATE_TABLE.keys())}"
|
||||
)
|
||||
|
||||
# Setup motor names, indices, and models
|
||||
@@ -46,7 +46,7 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
|
||||
motor_model = model # Use the motor model passed via argument
|
||||
|
||||
# Initialize the MotorBus with the correct port and motor configurations
|
||||
motor_bus = motor_bus_class(port=port, motors={motor_name: (motor_index_arbitrary, motor_model)})
|
||||
motor_bus = MotorsBusClass(port=port, motors={motor_name: (motor_index_arbitrary, motor_model)})
|
||||
|
||||
# Try to connect to the motor bus and handle any connection-specific errors
|
||||
try:
|
||||
@@ -59,7 +59,7 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
|
||||
# Motor bus is connected, proceed with the rest of the operations
|
||||
try:
|
||||
print("Scanning all baudrates and motor indices")
|
||||
all_baudrates = set(baudrate_table.values())
|
||||
all_baudrates = set(SERIES_BAUDRATE_TABLE.values())
|
||||
motor_index = -1 # Set the motor index to an out-of-range value.
|
||||
|
||||
for baudrate in all_baudrates:
|
||||
@@ -84,10 +84,10 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
|
||||
|
||||
if baudrate != baudrate_des:
|
||||
print(f"Setting its baudrate to {baudrate_des}")
|
||||
baudrate_idx = list(baudrate_table.values()).index(baudrate_des)
|
||||
baudrate_idx = list(SERIES_BAUDRATE_TABLE.values()).index(baudrate_des)
|
||||
|
||||
# The write can fail, so we allow retries
|
||||
for _ in range(num_write_retry):
|
||||
for _ in range(NUM_WRITE_RETRY):
|
||||
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "Baud_Rate", baudrate_idx)
|
||||
time.sleep(0.5)
|
||||
motor_bus.set_bus_baudrate(baudrate_des)
|
||||
@@ -124,7 +124,8 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
|
||||
time.sleep(4)
|
||||
print("Offset", motor_bus.read("Offset"))
|
||||
|
||||
while True:
|
||||
# Read present position for 15 seconds
|
||||
for _ in range(30):
|
||||
print("Present Position", motor_bus.read("Present_Position"))
|
||||
time.sleep(0.5)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user