ready for review

This commit is contained in:
Alexander Soare
2024-03-21 10:18:50 +00:00
parent d323993569
commit acf1174447
12 changed files with 282 additions and 85 deletions

View File

@@ -192,7 +192,7 @@ class AlohaEnv(AbstractEnv):
{
"observation": TensorDict(obs, batch_size=[]),
"reward": torch.tensor([reward], dtype=torch.float32),
# succes and done are true when coverage > self.success_threshold in env
# success and done are true when coverage > self.success_threshold in env
"done": torch.tensor([done], dtype=torch.bool),
"success": torch.tensor([success], dtype=torch.bool),
},

View File

@@ -62,27 +62,3 @@ def make_env(cfg, transform=None):
{"seed": env_seed} for env_seed in range(cfg.seed, cfg.seed + cfg.rollout_batch_size)
],
)
# def make_env(env_name, frame_skip, device, is_test=False):
# env = GymEnv(
# env_name,
# frame_skip=frame_skip,
# from_pixels=True,
# pixels_only=False,
# device=device,
# )
# env = TransformedEnv(env)
# env.append_transform(NoopResetEnv(noops=30, random=True))
# if not is_test:
# env.append_transform(EndOfLifeTransform())
# env.append_transform(RewardClipping(-1, 1))
# env.append_transform(ToTensorImage())
# env.append_transform(GrayScale())
# env.append_transform(Resize(84, 84))
# env.append_transform(CatFrames(N=4, dim=-3))
# env.append_transform(RewardSum())
# env.append_transform(StepCounter(max_steps=4500))
# env.append_transform(DoubleToFloat())
# env.append_transform(VecNorm(in_keys=["pixels"]))
# return env

View File

@@ -3,6 +3,8 @@ import logging
from collections import deque
from typing import Optional
import cv2
import numpy as np
import torch
from tensordict import TensorDict
from torchrl.data.tensor_specs import (
@@ -59,12 +61,30 @@ class PushtEnv(AbstractEnv):
self._env = PushTImageEnv(render_size=self.image_size)
def render(self, mode="rgb_array", width=384, height=384):
def render(self, mode="rgb_array", width=96, height=96, with_marker=True):
"""
with_marker adds a cursor showing the targeted action for the controller.
"""
if width != height:
raise NotImplementedError()
tmp = self._env.render_size
self._env.render_size = width
out = self._env.render(mode)
if width != self._env.render_size:
self._env.render_cache = None
self._env.render_size = width
out = self._env.render(mode).copy()
if with_marker and self._env.latest_action is not None:
action = np.array(self._env.latest_action)
coord = (action / 512 * self._env.render_size).astype(np.int32)
marker_size = int(8 / 96 * self._env.render_size)
thickness = int(1 / 96 * self._env.render_size)
cv2.drawMarker(
out,
coord,
color=(255, 0, 0),
markerType=cv2.MARKER_CROSS,
markerSize=marker_size,
thickness=thickness,
)
self._env.render_size = tmp
return out

View File

@@ -27,20 +27,6 @@ class PushTImageEnv(PushTEnv):
img_obs = np.moveaxis(img, -1, 0)
obs = {"image": img_obs, "agent_pos": agent_pos}
# draw action
if self.latest_action is not None:
action = np.array(self.latest_action)
coord = (action / 512 * 96).astype(np.int32)
marker_size = int(8 / 96 * self.render_size)
thickness = int(1 / 96 * self.render_size)
# cv2.drawMarker(
# img,
# coord,
# color=(255, 0, 0),
# markerType=cv2.MARKER_CROSS,
# markerSize=marker_size,
# thickness=thickness,
# )
self.render_cache = img
return obs

View File

@@ -1,3 +1,44 @@
"""Code from the original diffusion policy project.
Notes on how to load a checkpoint from the original repository:
In the original repository, run the eval and use a breakpoint to extract the policy weights.
```
torch.save(policy.state_dict(), "weights.pt")
```
In this repository, add a breakpoint somewhere after creating an equivalent policy and load in the weights:
```
loaded = torch.load("weights.pt")
aligned = {}
their_prefix = "obs_encoder.obs_nets.image.backbone"
our_prefix = "obs_encoder.key_model_map.image.backbone"
aligned.update({our_prefix + k.removeprefix(their_prefix): v for k, v in loaded.items() if k.startswith(their_prefix)})
their_prefix = "obs_encoder.obs_nets.image.pool"
our_prefix = "obs_encoder.key_model_map.image.pool"
aligned.update({our_prefix + k.removeprefix(their_prefix): v for k, v in loaded.items() if k.startswith(their_prefix)})
their_prefix = "obs_encoder.obs_nets.image.nets.3"
our_prefix = "obs_encoder.key_model_map.image.out"
aligned.update({our_prefix + k.removeprefix(their_prefix): v for k, v in loaded.items() if k.startswith(their_prefix)})
aligned.update({k: v for k, v in loaded.items() if k.startswith('model.')})
# Note: here you are loading into the ema model.
missing_keys, unexpected_keys = policy.ema_diffusion.load_state_dict(aligned, strict=False)
assert all('_dummy_variable' in k for k in missing_keys)
assert len(unexpected_keys) == 0
```
Then in that same runtime you can also save the weights with the new aligned state_dict:
```
policy.save("weights.pt")
```
Now you can remove the breakpoint and extra code and load in the weights just like with any other lerobot checkpoint.
"""
from typing import Dict
import torch

View File

@@ -1,11 +1,10 @@
import copy
from typing import Dict, Optional, Tuple, Union
import timm
import torch
import torch.nn as nn
import torchvision
from robomimic.models.base_nets import SpatialSoftmax
from robomimic.models.base_nets import ResNet18Conv, SpatialSoftmax
from lerobot.common.policies.diffusion.model.crop_randomizer import CropRandomizer
from lerobot.common.policies.diffusion.model.module_attr_mixin import ModuleAttrMixin
@@ -15,17 +14,16 @@ from lerobot.common.policies.diffusion.pytorch_utils import replace_submodules
class RgbEncoder(nn.Module):
"""Following `VisualCore` from Robomimic 0.2.0."""
def __init__(self, input_shape, model_name="resnet18", pretrained=False, relu=True, num_keypoints=32):
def __init__(self, input_shape, relu=True, pretrained=False, num_keypoints=32):
"""
input_shape: channel-first input shape (C, H, W)
resnet_name: a timm model name.
pretrained: whether to use timm pretrained weights.
rele: whether to use relu as a final step.
relu: whether to use relu as a final step.
num_keypoints: Number of keypoints for SpatialSoftmax (default value of 32 matches PushT Image).
"""
super().__init__()
self.backbone = timm.create_model(model_name, pretrained, num_classes=0, global_pool="")
# self.backbone = ResNet18Conv(input_channel=input_shape[0])
self.backbone = ResNet18Conv(input_channel=input_shape[0], pretrained=pretrained)
# Figure out the feature map shape.
with torch.inference_mode():
feat_map_shape = tuple(self.backbone(torch.zeros(size=(1, *input_shape))).shape[1:])
@@ -34,7 +32,6 @@ class RgbEncoder(nn.Module):
self.relu = nn.ReLU() if relu else nn.Identity()
def forward(self, x):
# TODO(now): make nonlinearity optional
return self.relu(self.out(torch.flatten(self.pool(self.backbone(x)), start_dim=1)))

View File

@@ -5,7 +5,6 @@ import time
import hydra
import torch
from lerobot.common.ema import update_ema_parameters
from lerobot.common.policies.abstract import AbstractPolicy
from lerobot.common.policies.diffusion.diffusion_unet_image_policy import DiffusionUnetImagePolicy
from lerobot.common.policies.diffusion.model.lr_scheduler import get_scheduler
@@ -21,6 +20,7 @@ class DiffusionPolicy(AbstractPolicy):
cfg_rgb_model,
cfg_obs_encoder,
cfg_optimizer,
cfg_ema,
shape_meta: dict,
horizon,
n_action_steps,
@@ -71,8 +71,13 @@ class DiffusionPolicy(AbstractPolicy):
self.diffusion.cuda()
self.ema_diffusion = None
if self.cfg.ema.enable:
self.ema = None
if self.cfg.use_ema:
self.ema_diffusion = copy.deepcopy(self.diffusion)
self.ema = hydra.utils.instantiate(
cfg_ema,
model=self.ema_diffusion,
)
self.optimizer = hydra.utils.instantiate(
cfg_optimizer,
@@ -175,8 +180,8 @@ class DiffusionPolicy(AbstractPolicy):
self.optimizer.zero_grad()
self.lr_scheduler.step()
if self.cfg.ema.enable:
update_ema_parameters(self.ema_diffusion, self.diffusion, self.cfg.ema.rate)
if self.ema is not None:
self.ema.step(self.diffusion)
info = {
"loss": loss.item(),

View File

@@ -16,6 +16,7 @@ def make_policy(cfg):
cfg_rgb_model=cfg.rgb_model,
cfg_obs_encoder=cfg.obs_encoder,
cfg_optimizer=cfg.optimizer,
cfg_ema=cfg.ema,
n_action_steps=cfg.n_action_steps + cfg.n_latency_steps,
**cfg.policy,
)
@@ -39,23 +40,4 @@ def make_policy(cfg):
raise NotImplementedError()
policy.load(cfg.policy.pretrained_model_path)
# import torch
# loaded = torch.load('/home/alexander/Downloads/dp.pth')
# aligned = {}
# their_prefix = "obs_encoder.obs_nets.image.backbone"
# our_prefix = "obs_encoder.key_model_map.image.backbone"
# aligned.update({our_prefix + k.removeprefix(their_prefix): v for k, v in loaded.items() if k.startswith(their_prefix)})
# their_prefix = "obs_encoder.obs_nets.image.pool"
# our_prefix = "obs_encoder.key_model_map.image.pool"
# aligned.update({our_prefix + k.removeprefix(their_prefix): v for k, v in loaded.items() if k.startswith(their_prefix)})
# their_prefix = "obs_encoder.obs_nets.image.nets.3"
# our_prefix = "obs_encoder.key_model_map.image.out"
# aligned.update({our_prefix + k.removeprefix(their_prefix): v for k, v in loaded.items() if k.startswith(their_prefix)})
# aligned.update({k: v for k, v in loaded.items() if k.startswith('model.')})
# missing_keys, unexpected_keys = policy.diffusion.load_state_dict(aligned, strict=False)
# assert all('_dummy_variable' in k for k in missing_keys)
# assert len(unexpected_keys) == 0
return policy

View File

@@ -12,6 +12,7 @@ shape_meta:
action:
shape: [2]
seed: 100000
horizon: 16
n_obs_steps: 2
n_action_steps: 8
@@ -26,7 +27,7 @@ eval_freq: 5000
save_freq: 5000
log_freq: 250
offline_steps: 50000
offline_steps: 200000
online_steps: 0
offline_prioritized_sampler: true
@@ -58,9 +59,7 @@ policy:
balanced_sampling: false
utd: 1
offline_steps: ${offline_steps}
ema:
enable: true
rate: 0.999
use_ema: true
lr_scheduler: cosine
lr_warmup_steps: 500
grad_clip_norm: 10
@@ -86,11 +85,18 @@ obs_encoder:
norm_mean_std: [0.5, 0.5] # for PushT the original impl normalizes to [-1, 1] (maybe not the case for robomimic envs)
rgb_model:
model_name: resnet18
pretrained: false
num_keypoints: 32
relu: true
ema:
_target_: lerobot.common.policies.diffusion.model.ema_model.EMAModel
update_after_step: 0
inv_gamma: 1.0
power: 0.75
min_value: 0.0
max_value: 0.9999
optimizer:
_target_: torch.optim.AdamW
lr: 1.0e-4

View File

@@ -50,6 +50,7 @@ def eval_policy(
def maybe_render_frame(env: EnvBase, _):
if save_video or (return_first_video and i == 0): # noqa: B023
# TODO now: generalize kwarg or maybe just remove it
ep_frames.append(env.render()) # noqa: B023
with torch.inference_mode():

198
poetry.lock generated
View File

@@ -604,6 +604,16 @@ files = [
[package.dependencies]
six = ">=1.4.0"
[[package]]
name = "egl-probe"
version = "1.0.2"
description = ""
optional = false
python-versions = "*"
files = [
{file = "egl_probe-1.0.2.tar.gz", hash = "sha256:29bdca7b08da1e060cfb42cd46af8300a7ac4f3b1b2eeb16e545ea16d9a5ac93"},
]
[[package]]
name = "einops"
version = "0.7.0"
@@ -763,6 +773,72 @@ files = [
[package.extras]
preview = ["glfw-preview"]
[[package]]
name = "grpcio"
version = "1.62.1"
description = "HTTP/2-based RPC framework"
optional = false
python-versions = ">=3.7"
files = [
{file = "grpcio-1.62.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:179bee6f5ed7b5f618844f760b6acf7e910988de77a4f75b95bbfaa8106f3c1e"},
{file = "grpcio-1.62.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:48611e4fa010e823ba2de8fd3f77c1322dd60cb0d180dc6630a7e157b205f7ea"},
{file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:b2a0e71b0a2158aa4bce48be9f8f9eb45cbd17c78c7443616d00abbe2a509f6d"},
{file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbe80577c7880911d3ad65e5ecc997416c98f354efeba2f8d0f9112a67ed65a5"},
{file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58f6c693d446964e3292425e1d16e21a97a48ba9172f2d0df9d7b640acb99243"},
{file = "grpcio-1.62.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:77c339403db5a20ef4fed02e4d1a9a3d9866bf9c0afc77a42234677313ea22f3"},
{file = "grpcio-1.62.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b5a4ea906db7dec694098435d84bf2854fe158eb3cd51e1107e571246d4d1d70"},
{file = "grpcio-1.62.1-cp310-cp310-win32.whl", hash = "sha256:4187201a53f8561c015bc745b81a1b2d278967b8de35f3399b84b0695e281d5f"},
{file = "grpcio-1.62.1-cp310-cp310-win_amd64.whl", hash = "sha256:844d1f3fb11bd1ed362d3fdc495d0770cfab75761836193af166fee113421d66"},
{file = "grpcio-1.62.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:833379943d1728a005e44103f17ecd73d058d37d95783eb8f0b28ddc1f54d7b2"},
{file = "grpcio-1.62.1-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:c7fcc6a32e7b7b58f5a7d27530669337a5d587d4066060bcb9dee7a8c833dfb7"},
{file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:fa7d28eb4d50b7cbe75bb8b45ed0da9a1dc5b219a0af59449676a29c2eed9698"},
{file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48f7135c3de2f298b833be8b4ae20cafe37091634e91f61f5a7eb3d61ec6f660"},
{file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:71f11fd63365ade276c9d4a7b7df5c136f9030e3457107e1791b3737a9b9ed6a"},
{file = "grpcio-1.62.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4b49fd8fe9f9ac23b78437da94c54aa7e9996fbb220bac024a67469ce5d0825f"},
{file = "grpcio-1.62.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:482ae2ae78679ba9ed5752099b32e5fe580443b4f798e1b71df412abf43375db"},
{file = "grpcio-1.62.1-cp311-cp311-win32.whl", hash = "sha256:1faa02530b6c7426404372515fe5ddf66e199c2ee613f88f025c6f3bd816450c"},
{file = "grpcio-1.62.1-cp311-cp311-win_amd64.whl", hash = "sha256:5bd90b8c395f39bc82a5fb32a0173e220e3f401ff697840f4003e15b96d1befc"},
{file = "grpcio-1.62.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:b134d5d71b4e0837fff574c00e49176051a1c532d26c052a1e43231f252d813b"},
{file = "grpcio-1.62.1-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:d1f6c96573dc09d50dbcbd91dbf71d5cf97640c9427c32584010fbbd4c0e0037"},
{file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:359f821d4578f80f41909b9ee9b76fb249a21035a061a327f91c953493782c31"},
{file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a485f0c2010c696be269184bdb5ae72781344cb4e60db976c59d84dd6354fac9"},
{file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b50b09b4dc01767163d67e1532f948264167cd27f49e9377e3556c3cba1268e1"},
{file = "grpcio-1.62.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3227c667dccbe38f2c4d943238b887bac588d97c104815aecc62d2fd976e014b"},
{file = "grpcio-1.62.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3952b581eb121324853ce2b191dae08badb75cd493cb4e0243368aa9e61cfd41"},
{file = "grpcio-1.62.1-cp312-cp312-win32.whl", hash = "sha256:83a17b303425104d6329c10eb34bba186ffa67161e63fa6cdae7776ff76df73f"},
{file = "grpcio-1.62.1-cp312-cp312-win_amd64.whl", hash = "sha256:6696ffe440333a19d8d128e88d440f91fb92c75a80ce4b44d55800e656a3ef1d"},
{file = "grpcio-1.62.1-cp37-cp37m-linux_armv7l.whl", hash = "sha256:e3393b0823f938253370ebef033c9fd23d27f3eae8eb9a8f6264900c7ea3fb5a"},
{file = "grpcio-1.62.1-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:83e7ccb85a74beaeae2634f10eb858a0ed1a63081172649ff4261f929bacfd22"},
{file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:882020c87999d54667a284c7ddf065b359bd00251fcd70279ac486776dbf84ec"},
{file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a10383035e864f386fe096fed5c47d27a2bf7173c56a6e26cffaaa5a361addb1"},
{file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:960edebedc6b9ada1ef58e1c71156f28689978188cd8cff3b646b57288a927d9"},
{file = "grpcio-1.62.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:23e2e04b83f347d0aadde0c9b616f4726c3d76db04b438fd3904b289a725267f"},
{file = "grpcio-1.62.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:978121758711916d34fe57c1f75b79cdfc73952f1481bb9583399331682d36f7"},
{file = "grpcio-1.62.1-cp37-cp37m-win_amd64.whl", hash = "sha256:9084086190cc6d628f282e5615f987288b95457292e969b9205e45b442276407"},
{file = "grpcio-1.62.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:22bccdd7b23c420a27fd28540fb5dcbc97dc6be105f7698cb0e7d7a420d0e362"},
{file = "grpcio-1.62.1-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:8999bf1b57172dbc7c3e4bb3c732658e918f5c333b2942243f10d0d653953ba9"},
{file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:d9e52558b8b8c2f4ac05ac86344a7417ccdd2b460a59616de49eb6933b07a0bd"},
{file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1714e7bc935780bc3de1b3fcbc7674209adf5208ff825799d579ffd6cd0bd505"},
{file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8842ccbd8c0e253c1f189088228f9b433f7a93b7196b9e5b6f87dba393f5d5d"},
{file = "grpcio-1.62.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1f1e7b36bdff50103af95a80923bf1853f6823dd62f2d2a2524b66ed74103e49"},
{file = "grpcio-1.62.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bba97b8e8883a8038606480d6b6772289f4c907f6ba780fa1f7b7da7dfd76f06"},
{file = "grpcio-1.62.1-cp38-cp38-win32.whl", hash = "sha256:a7f615270fe534548112a74e790cd9d4f5509d744dd718cd442bf016626c22e4"},
{file = "grpcio-1.62.1-cp38-cp38-win_amd64.whl", hash = "sha256:e6c8c8693df718c5ecbc7babb12c69a4e3677fd11de8886f05ab22d4e6b1c43b"},
{file = "grpcio-1.62.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:73db2dc1b201d20ab7083e7041946910bb991e7e9761a0394bbc3c2632326483"},
{file = "grpcio-1.62.1-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:407b26b7f7bbd4f4751dbc9767a1f0716f9fe72d3d7e96bb3ccfc4aace07c8de"},
{file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:f8de7c8cef9261a2d0a62edf2ccea3d741a523c6b8a6477a340a1f2e417658de"},
{file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bd5c8a1af40ec305d001c60236308a67e25419003e9bb3ebfab5695a8d0b369"},
{file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be0477cb31da67846a33b1a75c611f88bfbcd427fe17701b6317aefceee1b96f"},
{file = "grpcio-1.62.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:60dcd824df166ba266ee0cfaf35a31406cd16ef602b49f5d4dfb21f014b0dedd"},
{file = "grpcio-1.62.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:973c49086cabab773525f6077f95e5a993bfc03ba8fc32e32f2c279497780585"},
{file = "grpcio-1.62.1-cp39-cp39-win32.whl", hash = "sha256:12859468e8918d3bd243d213cd6fd6ab07208195dc140763c00dfe901ce1e1b4"},
{file = "grpcio-1.62.1-cp39-cp39-win_amd64.whl", hash = "sha256:b7209117bbeebdfa5d898205cc55153a51285757902dd73c47de498ad4d11332"},
{file = "grpcio-1.62.1.tar.gz", hash = "sha256:6c455e008fa86d9e9a9d85bb76da4277c0d7d9668a3bfa70dbe86e9f3c759947"},
]
[package.extras]
protobuf = ["grpcio-tools (>=1.62.1)"]
[[package]]
name = "gym"
version = "0.26.2"
@@ -1038,13 +1114,13 @@ setuptools = "*"
[[package]]
name = "importlib-metadata"
version = "7.0.2"
version = "7.1.0"
description = "Read metadata from Python packages"
optional = false
python-versions = ">=3.8"
files = [
{file = "importlib_metadata-7.0.2-py3-none-any.whl", hash = "sha256:f4bc4c0c070c490abf4ce96d715f68e95923320370efb66143df00199bb6c100"},
{file = "importlib_metadata-7.0.2.tar.gz", hash = "sha256:198f568f3230878cb1b44fbd7975f87906c22336dba2e4a7f05278c281fbd792"},
{file = "importlib_metadata-7.1.0-py3-none-any.whl", hash = "sha256:30962b96c0c223483ed6cc7280e7f0199feb01a0e40cfae4d4450fc6fab1f570"},
{file = "importlib_metadata-7.1.0.tar.gz", hash = "sha256:b78938b926ee8d5f020fc4772d487045805a55ddbad2ecf21c6d60938dc7fcd2"},
]
[package.dependencies]
@@ -1053,7 +1129,7 @@ zipp = ">=0.5"
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
perf = ["ipython"]
testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"]
testing = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"]
[[package]]
name = "iniconfig"
@@ -1265,6 +1341,21 @@ html5 = ["html5lib"]
htmlsoup = ["BeautifulSoup4"]
source = ["Cython (>=3.0.7)"]
[[package]]
name = "markdown"
version = "3.6"
description = "Python implementation of John Gruber's Markdown."
optional = false
python-versions = ">=3.8"
files = [
{file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"},
{file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"},
]
[package.extras]
docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"]
testing = ["coverage", "pyyaml"]
[[package]]
name = "markupsafe"
version = "2.1.5"
@@ -2460,6 +2551,30 @@ urllib3 = ">=1.21.1,<3"
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "robomimic"
version = "0.2.0"
description = "robomimic: A Modular Framework for Robot Learning from Demonstration"
optional = false
python-versions = ">=3"
files = [
{file = "robomimic-0.2.0.tar.gz", hash = "sha256:ee3bb5cf9c3e1feead6b57b43c5db738fd0a8e0c015fdf6419808af8fffdc463"},
]
[package.dependencies]
egl_probe = ">=1.0.1"
h5py = "*"
imageio = "*"
imageio-ffmpeg = "*"
numpy = ">=1.13.3"
psutil = "*"
tensorboard = "*"
tensorboardX = "*"
termcolor = "*"
torch = "*"
torchvision = "*"
tqdm = "*"
[[package]]
name = "safetensors"
version = "0.4.2"
@@ -2684,13 +2799,13 @@ test = ["asv", "gmpy2", "hypothesis", "mpmath", "pooch", "pytest", "pytest-cov",
[[package]]
name = "sentry-sdk"
version = "1.42.0"
version = "1.43.0"
description = "Python client for Sentry (https://sentry.io)"
optional = false
python-versions = "*"
files = [
{file = "sentry-sdk-1.42.0.tar.gz", hash = "sha256:4a8364b8f7edbf47f95f7163e48334c96100d9c098f0ae6606e2e18183c223e6"},
{file = "sentry_sdk-1.42.0-py2.py3-none-any.whl", hash = "sha256:a654ee7e497a3f5f6368b36d4f04baeab1fe92b3105f7f6965d6ef0de35a9ba4"},
{file = "sentry-sdk-1.43.0.tar.gz", hash = "sha256:41df73af89d22921d8733714fb0fc5586c3461907e06688e6537d01a27e0e0f6"},
{file = "sentry_sdk-1.43.0-py2.py3-none-any.whl", hash = "sha256:8d768724839ca18d7b4c7463ef7528c40b7aa2bfbf7fe554d5f9a7c044acfd36"},
]
[package.dependencies]
@@ -2704,6 +2819,7 @@ asyncpg = ["asyncpg (>=0.23)"]
beam = ["apache-beam (>=2.12)"]
bottle = ["bottle (>=0.12.13)"]
celery = ["celery (>=3)"]
celery-redbeat = ["celery-redbeat (>=2)"]
chalice = ["chalice (>=1.16.0)"]
clickhouse-driver = ["clickhouse-driver (>=0.2.0)"]
django = ["django (>=1.8)"]
@@ -2948,6 +3064,55 @@ files = [
[package.dependencies]
mpmath = ">=0.19"
[[package]]
name = "tensorboard"
version = "2.16.2"
description = "TensorBoard lets you watch Tensors Flow"
optional = false
python-versions = ">=3.9"
files = [
{file = "tensorboard-2.16.2-py3-none-any.whl", hash = "sha256:9f2b4e7dad86667615c0e5cd072f1ea8403fc032a299f0072d6f74855775cc45"},
]
[package.dependencies]
absl-py = ">=0.4"
grpcio = ">=1.48.2"
markdown = ">=2.6.8"
numpy = ">=1.12.0"
protobuf = ">=3.19.6,<4.24.0 || >4.24.0"
setuptools = ">=41.0.0"
six = ">1.9"
tensorboard-data-server = ">=0.7.0,<0.8.0"
werkzeug = ">=1.0.1"
[[package]]
name = "tensorboard-data-server"
version = "0.7.2"
description = "Fast data loading for TensorBoard"
optional = false
python-versions = ">=3.7"
files = [
{file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"},
{file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"},
{file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"},
]
[[package]]
name = "tensorboardx"
version = "2.6.2.2"
description = "TensorBoardX lets you watch Tensors Flow without Tensorflow"
optional = false
python-versions = "*"
files = [
{file = "tensorboardX-2.6.2.2-py2.py3-none-any.whl", hash = "sha256:160025acbf759ede23fd3526ae9d9bfbfd8b68eb16c38a010ebe326dc6395db8"},
{file = "tensorboardX-2.6.2.2.tar.gz", hash = "sha256:c6476d7cd0d529b0b72f4acadb1269f9ed8b22f441e87a84f2a3b940bb87b666"},
]
[package.dependencies]
numpy = "*"
packaging = "*"
protobuf = ">=3.20"
[[package]]
name = "tensordict"
version = "0.4.0+ca4256e"
@@ -3289,6 +3454,23 @@ perf = ["orjson"]
reports = ["pydantic (>=2.0.0)"]
sweeps = ["sweeps (>=0.2.0)"]
[[package]]
name = "werkzeug"
version = "3.0.1"
description = "The comprehensive WSGI web application library."
optional = false
python-versions = ">=3.8"
files = [
{file = "werkzeug-3.0.1-py3-none-any.whl", hash = "sha256:90a285dc0e42ad56b34e696398b8122ee4c681833fb35b8334a095d82c56da10"},
{file = "werkzeug-3.0.1.tar.gz", hash = "sha256:507e811ecea72b18a404947aded4b3390e1db8f826b494d76550ef45bb3b1dcc"},
]
[package.dependencies]
MarkupSafe = ">=2.1.1"
[package.extras]
watchdog = ["watchdog (>=2.3)"]
[[package]]
name = "zarr"
version = "2.17.1"
@@ -3328,4 +3510,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "ee86b84a795e6a3e9c2d79f244a87b55589adbe46d549ac38adf48be27c04cf9"
content-hash = "1a45c808e1c48bcbf4319d4cf6876771b7d50f40a5a8968a8b7f3af36192bf34"

View File

@@ -51,6 +51,7 @@ torchvision = "^0.17.1"
h5py = "^3.10.0"
dm-control = "1.0.14"
huggingface-hub = {extras = ["hf-transfer"], version = "^0.21.4"}
robomimic = "0.2.0"
[tool.poetry.group.dev.dependencies]