Add manage_dataset

This commit is contained in:
Remi Cadene
2024-12-03 17:16:47 +01:00
parent 8e7d6970ea
commit afbd42d082
2 changed files with 118 additions and 2 deletions

View File

@@ -873,7 +873,13 @@ class LeRobotDataset(torch.utils.data.Dataset):
return video_paths
def consolidate(self, run_compute_stats: bool = True, keep_image_files: bool = False) -> None:
def consolidate(
self,
run_compute_stats: bool = True,
keep_image_files: bool = False,
batch_size: int = 8,
num_workers: int = 8,
) -> None:
self.hf_dataset = self.load_hf_dataset()
self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)
check_timestamps_sync(self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s)
@@ -896,7 +902,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
if run_compute_stats:
self.stop_image_writer()
# TODO(aliberts): refactor stats in save_episodes
self.meta.stats = compute_stats(self)
self.meta.stats = compute_stats(self, batch_size=batch_size, num_workers=num_workers)
serialized_stats = serialize_dict(self.meta.stats)
write_json(serialized_stats, self.root / STATS_PATH)
self.consolidated = True

View File

@@ -0,0 +1,110 @@
"""
Utilities to manage a dataset.
Examples of usage:
- Consolidate a dataset, by encoding images into videos and computing statistics:
```bash
python lerobot/scripts/manage_dataset.py consolidate \
--repo-id $USER/koch_test
```
- Consolidate a dataset which is not uploaded on the hub yet:
```bash
python lerobot/scripts/manage_dataset.py consolidate \
--repo-id $USER/koch_test \
--local-files-only 1
```
- Upload a dataset on the hub:
```bash
python lerobot/scripts/manage_dataset.py push_to_hub \
--repo-id $USER/koch_test
```
"""
import argparse
from pathlib import Path
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
if __name__ == "__main__":
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest="mode", required=True)
# Set common options for all the subparsers
base_parser = argparse.ArgumentParser(add_help=False)
base_parser.add_argument(
"--root",
type=Path,
default=None,
help="Root directory where the dataset will be stored (e.g. 'dataset/path').",
)
base_parser.add_argument(
"--repo-id",
type=str,
default="lerobot/test",
help="Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).",
)
base_parser.add_argument(
"--local-files-only",
type=int,
default=0,
help="Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.",
)
parser_conso = subparsers.add_parser("consolidate", parents=[base_parser])
parser_conso.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size loaded by DataLoader for computing the dataset statistics.",
)
parser_conso.add_argument(
"--num-workers",
type=int,
default=8,
help="Number of processes of Dataloader for computing the dataset statistics.",
)
parser_push = subparsers.add_parser("push_to_hub", parents=[base_parser])
parser_push.add_argument(
"--tags",
type=str,
nargs="*",
default=None,
help="Optional additional tags to categorize the dataset on the Hugging Face Hub. Use space-separated values (e.g. 'so100 indoor'). The tag 'LeRobot' will always be added.",
)
parser_push.add_argument(
"--license",
type=str,
default="apache-2.0",
help="Repo license. Must be one of https://huggingface.co/docs/hub/repositories-licenses. Defaults to mit.",
)
parser_push.add_argument(
"--private",
type=int,
default=0,
help="Create a private dataset repository on the Hugging Face Hub.",
)
args = parser.parse_args()
kwargs = vars(args)
mode = kwargs.pop("mode")
repo_id = kwargs.pop("repo_id")
root = kwargs.pop("root")
local_files_only = kwargs.pop("local_files_only")
dataset = LeRobotDataset(
repo_id=repo_id,
root=root,
local_files_only=local_files_only,
)
if mode == "consolidate":
dataset.consolidate(**kwargs)
elif mode == "push_to_hub":
private = kwargs.pop("private") == 1
dataset.push_to_hub(private=private, **kwargs)