forked from tangger/lerobot
Add tasks without end_effector that are compatible with dataset, Eval can run (TODO: training and pretrained model)
This commit is contained in:
@@ -26,8 +26,6 @@ JOINTS = [
|
||||
"right_arm_gripper",
|
||||
]
|
||||
|
||||
# TODO(rcadene): this is for end to end, not when we control end effector
|
||||
# TODO(rcadene): dimension names are wrong
|
||||
ACTIONS = [
|
||||
# position and quaternion for end effector
|
||||
"left_arm_waist",
|
||||
@@ -36,19 +34,16 @@ ACTIONS = [
|
||||
"left_arm_forearm_roll",
|
||||
"left_arm_wrist_angle",
|
||||
"left_arm_wrist_rotate",
|
||||
"left_arm_left_finger",
|
||||
# normalized gripper position (0: close, 1: open)
|
||||
"left_arm_right_finger",
|
||||
# position and quaternion for end effector
|
||||
"left_arm_gripper",
|
||||
"right_arm_waist",
|
||||
"right_arm_shoulder",
|
||||
"right_arm_elbow",
|
||||
"right_arm_forearm_roll",
|
||||
"right_arm_wrist_angle",
|
||||
"right_arm_wrist_rotate",
|
||||
"right_arm_left_finger",
|
||||
# normalized gripper position (0: close, 1: open)
|
||||
"right_arm_right_finger",
|
||||
"right_arm_gripper",
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import collections
|
||||
import importlib
|
||||
import logging
|
||||
from collections import deque
|
||||
@@ -9,7 +8,6 @@ import numpy as np
|
||||
import torch
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from dm_control.suite import base
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.tensor_specs import (
|
||||
BoundedTensorSpec,
|
||||
@@ -19,293 +17,24 @@ from torchrl.data.tensor_specs import (
|
||||
)
|
||||
from torchrl.envs import EnvBase
|
||||
|
||||
from lerobot.common.utils import set_seed
|
||||
|
||||
from .constants import (
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
ACTIONS,
|
||||
ASSETS_DIR,
|
||||
DT,
|
||||
JOINTS,
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
START_ARM_POSE,
|
||||
normalize_puppet_gripper_position,
|
||||
normalize_puppet_gripper_velocity,
|
||||
unnormalize_puppet_gripper_position,
|
||||
)
|
||||
from lerobot.common.envs.aloha.tasks.sim import BOX_POSE, InsertionTask, TransferCubeTask
|
||||
from lerobot.common.envs.aloha.tasks.sim_end_effector import (
|
||||
InsertionEndEffectorTask,
|
||||
TransferCubeEndEffectorTask,
|
||||
)
|
||||
from lerobot.common.utils import set_seed
|
||||
|
||||
from .utils import sample_box_pose, sample_insertion_pose
|
||||
|
||||
_has_gym = importlib.util.find_spec("gym") is not None
|
||||
|
||||
|
||||
# def make_ee_sim_env(task_name):
|
||||
# """
|
||||
# Environment for simulated robot bi-manual manipulation, with end-effector control.
|
||||
# Action space: [left_arm_pose (7), # position and quaternion for end effector
|
||||
# left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
|
||||
# right_arm_pose (7), # position and quaternion for end effector
|
||||
# right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
|
||||
|
||||
# Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
|
||||
# left_gripper_position (1), # normalized gripper position (0: close, 1: open)
|
||||
# right_arm_qpos (6), # absolute joint position
|
||||
# right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
|
||||
# "qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
|
||||
# left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
|
||||
# right_arm_qvel (6), # absolute joint velocity (rad)
|
||||
# right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
|
||||
# "images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
|
||||
# """
|
||||
# if "sim_transfer_cube" in task_name:
|
||||
# xml_path = ASSETS_DIR / "bimanual_viperx_ee_transfer_cube.xml"
|
||||
# physics = mujoco.Physics.from_xml_path(xml_path)
|
||||
# task = TransferCubeEETask(random=False)
|
||||
# env = control.Environment(
|
||||
# physics, task, time_limit=20, control_timestep=DT, n_sub_steps=None, flat_observation=False
|
||||
# )
|
||||
# elif "sim_insertion" in task_name:
|
||||
# xml_path = ASSETS_DIR / "bimanual_viperx_ee_insertion.xml"
|
||||
# physics = mujoco.Physics.from_xml_path(xml_path)
|
||||
# task = InsertionEETask(random=False)
|
||||
# env = control.Environment(
|
||||
# physics, task, time_limit=20, control_timestep=DT, n_sub_steps=None, flat_observation=False
|
||||
# )
|
||||
# else:
|
||||
# raise NotImplementedError
|
||||
# return env
|
||||
|
||||
|
||||
class BimanualViperXEETask(base.Task):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
|
||||
def before_step(self, action, physics):
|
||||
a_len = len(action) // 2
|
||||
action_left = action[:a_len]
|
||||
action_right = action[a_len:]
|
||||
|
||||
# set mocap position and quat
|
||||
# left
|
||||
np.copyto(physics.data.mocap_pos[0], action_left[:3])
|
||||
np.copyto(physics.data.mocap_quat[0], action_left[3:7])
|
||||
# right
|
||||
np.copyto(physics.data.mocap_pos[1], action_right[:3])
|
||||
np.copyto(physics.data.mocap_quat[1], action_right[3:7])
|
||||
|
||||
# set gripper
|
||||
g_left_ctrl = unnormalize_puppet_gripper_position(action_left[7])
|
||||
g_right_ctrl = unnormalize_puppet_gripper_position(action_right[7])
|
||||
np.copyto(physics.data.ctrl, np.array([g_left_ctrl, -g_left_ctrl, g_right_ctrl, -g_right_ctrl]))
|
||||
|
||||
def initialize_robots(self, physics):
|
||||
# reset joint position
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
|
||||
# reset mocap to align with end effector
|
||||
# to obtain these numbers:
|
||||
# (1) make an ee_sim env and reset to the same start_pose
|
||||
# (2) get env._physics.named.data.xpos['vx300s_left/gripper_link']
|
||||
# get env._physics.named.data.xquat['vx300s_left/gripper_link']
|
||||
# repeat the same for right side
|
||||
np.copyto(physics.data.mocap_pos[0], [-0.31718881, 0.5, 0.29525084])
|
||||
np.copyto(physics.data.mocap_quat[0], [1, 0, 0, 0])
|
||||
# right
|
||||
np.copyto(physics.data.mocap_pos[1], np.array([0.31718881, 0.49999888, 0.29525084]))
|
||||
np.copyto(physics.data.mocap_quat[1], [1, 0, 0, 0])
|
||||
|
||||
# reset gripper control
|
||||
close_gripper_control = np.array(
|
||||
[
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
-PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
-PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
]
|
||||
)
|
||||
np.copyto(physics.data.ctrl, close_gripper_control)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_qpos(physics):
|
||||
qpos_raw = physics.data.qpos.copy()
|
||||
left_qpos_raw = qpos_raw[:8]
|
||||
right_qpos_raw = qpos_raw[8:16]
|
||||
left_arm_qpos = left_qpos_raw[:6]
|
||||
right_arm_qpos = right_qpos_raw[:6]
|
||||
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
|
||||
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
|
||||
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
|
||||
|
||||
@staticmethod
|
||||
def get_qvel(physics):
|
||||
qvel_raw = physics.data.qvel.copy()
|
||||
left_qvel_raw = qvel_raw[:8]
|
||||
right_qvel_raw = qvel_raw[8:16]
|
||||
left_arm_qvel = left_qvel_raw[:6]
|
||||
right_arm_qvel = right_qvel_raw[:6]
|
||||
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
|
||||
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
|
||||
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_observation(self, physics):
|
||||
# note: it is important to do .copy()
|
||||
obs = collections.OrderedDict()
|
||||
obs["qpos"] = self.get_qpos(physics)
|
||||
obs["qvel"] = self.get_qvel(physics)
|
||||
obs["env_state"] = self.get_env_state(physics)
|
||||
obs["images"] = {}
|
||||
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
|
||||
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
|
||||
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
|
||||
# used in scripted policy to obtain starting pose
|
||||
obs["mocap_pose_left"] = np.concatenate(
|
||||
[physics.data.mocap_pos[0], physics.data.mocap_quat[0]]
|
||||
).copy()
|
||||
obs["mocap_pose_right"] = np.concatenate(
|
||||
[physics.data.mocap_pos[1], physics.data.mocap_quat[1]]
|
||||
).copy()
|
||||
|
||||
# used when replaying joint trajectory
|
||||
obs["gripper_ctrl"] = physics.data.ctrl.copy()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TransferCubeEETask(BimanualViperXEETask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
self.initialize_robots(physics)
|
||||
# randomize box position
|
||||
cube_pose = sample_box_pose()
|
||||
box_start_idx = physics.model.name2id("red_box_joint", "joint")
|
||||
np.copyto(physics.data.qpos[box_start_idx : box_start_idx + 7], cube_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_table = ("red_box", "table") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_right_gripper:
|
||||
reward = 1
|
||||
if touch_right_gripper and not touch_table: # lifted
|
||||
reward = 2
|
||||
if touch_left_gripper: # attempted transfer
|
||||
reward = 3
|
||||
if touch_left_gripper and not touch_table: # successful transfer
|
||||
reward = 4
|
||||
return reward
|
||||
|
||||
|
||||
class InsertionEETask(BimanualViperXEETask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
self.initialize_robots(physics)
|
||||
# randomize peg and socket position
|
||||
peg_pose, socket_pose = sample_insertion_pose()
|
||||
|
||||
def id2index(j_id):
|
||||
return 16 + (j_id - 16) * 7 # first 16 is robot qpos, 7 is pose dim # hacky
|
||||
|
||||
peg_start_id = physics.model.name2id("red_peg_joint", "joint")
|
||||
peg_start_idx = id2index(peg_start_id)
|
||||
np.copyto(physics.data.qpos[peg_start_idx : peg_start_idx + 7], peg_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
socket_start_id = physics.model.name2id("blue_socket_joint", "joint")
|
||||
socket_start_idx = id2index(socket_start_id)
|
||||
np.copyto(physics.data.qpos[socket_start_idx : socket_start_idx + 7], socket_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether peg touches the pin
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_left_gripper = (
|
||||
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
)
|
||||
|
||||
peg_touch_table = ("red_peg", "table") in all_contact_pairs
|
||||
socket_touch_table = (
|
||||
("socket-1", "table") in all_contact_pairs
|
||||
or ("socket-2", "table") in all_contact_pairs
|
||||
or ("socket-3", "table") in all_contact_pairs
|
||||
or ("socket-4", "table") in all_contact_pairs
|
||||
)
|
||||
peg_touch_socket = (
|
||||
("red_peg", "socket-1") in all_contact_pairs
|
||||
or ("red_peg", "socket-2") in all_contact_pairs
|
||||
or ("red_peg", "socket-3") in all_contact_pairs
|
||||
or ("red_peg", "socket-4") in all_contact_pairs
|
||||
)
|
||||
pin_touched = ("red_peg", "pin") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_left_gripper and touch_right_gripper: # touch both
|
||||
reward = 1
|
||||
if (
|
||||
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
|
||||
): # grasp both
|
||||
reward = 2
|
||||
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
|
||||
reward = 3
|
||||
if pin_touched: # successful insertion
|
||||
reward = 4
|
||||
return reward
|
||||
|
||||
|
||||
class AlohaEnv(EnvBase):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -320,6 +49,7 @@ class AlohaEnv(EnvBase):
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(device=device, batch_size=[])
|
||||
self.task = task
|
||||
self.frame_skip = frame_skip
|
||||
self.from_pixels = from_pixels
|
||||
self.pixels_only = pixels_only
|
||||
@@ -338,27 +68,7 @@ class AlohaEnv(EnvBase):
|
||||
if not from_pixels:
|
||||
raise NotImplementedError()
|
||||
|
||||
# time limit is controlled by StepCounter in factory
|
||||
time_limit = float("inf")
|
||||
|
||||
if "sim_transfer_cube" in task:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_ee_transfer_cube.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = TransferCubeEETask(random=False)
|
||||
env = control.Environment(
|
||||
physics, task, time_limit, control_timestep=DT, n_sub_steps=None, flat_observation=False
|
||||
)
|
||||
elif "sim_insertion" in task:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_ee_insertion.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = InsertionEETask(random=False)
|
||||
env = control.Environment(
|
||||
physics, task, time_limit, control_timestep=DT, n_sub_steps=None, flat_observation=False
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
self._env = env
|
||||
self._env = self._make_env_task(task)
|
||||
|
||||
self._make_spec()
|
||||
self._current_seed = self.set_seed(seed)
|
||||
@@ -375,6 +85,36 @@ class AlohaEnv(EnvBase):
|
||||
image = self._env.physics.render(height=height, width=width, camera_id="top")
|
||||
return image
|
||||
|
||||
def _make_env_task(self, task_name):
|
||||
# time limit is controlled by StepCounter in env factory
|
||||
time_limit = float("inf")
|
||||
|
||||
if "sim_transfer_cube" in task_name:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_transfer_cube.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = TransferCubeTask(random=False)
|
||||
elif "sim_insertion" in task_name:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_insertion.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = InsertionTask(random=False)
|
||||
elif "sim_end_effector_transfer_cube" in task_name:
|
||||
raise NotImplementedError()
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_transfer_cube.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = TransferCubeEndEffectorTask(random=False)
|
||||
elif "sim_end_effector_insertion" in task_name:
|
||||
raise NotImplementedError()
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_insertion.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = InsertionEndEffectorTask(random=False)
|
||||
else:
|
||||
raise NotImplementedError(task_name)
|
||||
|
||||
env = control.Environment(
|
||||
physics, task, time_limit, control_timestep=DT, n_sub_steps=None, flat_observation=False
|
||||
)
|
||||
return env
|
||||
|
||||
def _format_raw_obs(self, raw_obs):
|
||||
if self.from_pixels:
|
||||
image = torch.from_numpy(raw_obs["images"]["top"].copy())
|
||||
@@ -396,6 +136,13 @@ class AlohaEnv(EnvBase):
|
||||
# we need to handle seed iteration, since self._env.reset() rely an internal _seed.
|
||||
self._current_seed += 1
|
||||
self.set_seed(self._current_seed)
|
||||
|
||||
# TODO(rcadene): do not use global variable for this
|
||||
if "sim_transfer_cube" in self.task:
|
||||
BOX_POSE[0] = sample_box_pose() # used in sim reset
|
||||
elif "sim_insertion" in self.task:
|
||||
BOX_POSE[0] = np.concatenate(sample_insertion_pose()) # used in sim reset
|
||||
|
||||
raw_obs = self._env.reset()
|
||||
# TODO(rcadene): add assert
|
||||
# assert self._current_seed == self._env._seed
|
||||
|
||||
219
lerobot/common/envs/aloha/tasks/sim.py
Normal file
219
lerobot/common/envs/aloha/tasks/sim.py
Normal file
@@ -0,0 +1,219 @@
|
||||
import collections
|
||||
|
||||
import numpy as np
|
||||
from dm_control.suite import base
|
||||
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
START_ARM_POSE,
|
||||
normalize_puppet_gripper_position,
|
||||
normalize_puppet_gripper_velocity,
|
||||
unnormalize_puppet_gripper_position,
|
||||
)
|
||||
|
||||
BOX_POSE = [None] # to be changed from outside
|
||||
|
||||
"""
|
||||
Environment for simulated robot bi-manual manipulation, with joint position control
|
||||
Action space: [left_arm_qpos (6), # absolute joint position
|
||||
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_qpos (6), # absolute joint position
|
||||
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
|
||||
|
||||
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
|
||||
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_qpos (6), # absolute joint position
|
||||
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
|
||||
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
|
||||
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
|
||||
right_arm_qvel (6), # absolute joint velocity (rad)
|
||||
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
|
||||
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
|
||||
"""
|
||||
|
||||
|
||||
class BimanualViperXTask(base.Task):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
|
||||
def before_step(self, action, physics):
|
||||
left_arm_action = action[:6]
|
||||
right_arm_action = action[7 : 7 + 6]
|
||||
normalized_left_gripper_action = action[6]
|
||||
normalized_right_gripper_action = action[7 + 6]
|
||||
|
||||
left_gripper_action = unnormalize_puppet_gripper_position(normalized_left_gripper_action)
|
||||
right_gripper_action = unnormalize_puppet_gripper_position(normalized_right_gripper_action)
|
||||
|
||||
full_left_gripper_action = [left_gripper_action, -left_gripper_action]
|
||||
full_right_gripper_action = [right_gripper_action, -right_gripper_action]
|
||||
|
||||
env_action = np.concatenate(
|
||||
[left_arm_action, full_left_gripper_action, right_arm_action, full_right_gripper_action]
|
||||
)
|
||||
super().before_step(env_action, physics)
|
||||
return
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_qpos(physics):
|
||||
qpos_raw = physics.data.qpos.copy()
|
||||
left_qpos_raw = qpos_raw[:8]
|
||||
right_qpos_raw = qpos_raw[8:16]
|
||||
left_arm_qpos = left_qpos_raw[:6]
|
||||
right_arm_qpos = right_qpos_raw[:6]
|
||||
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
|
||||
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
|
||||
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
|
||||
|
||||
@staticmethod
|
||||
def get_qvel(physics):
|
||||
qvel_raw = physics.data.qvel.copy()
|
||||
left_qvel_raw = qvel_raw[:8]
|
||||
right_qvel_raw = qvel_raw[8:16]
|
||||
left_arm_qvel = left_qvel_raw[:6]
|
||||
right_arm_qvel = right_qvel_raw[:6]
|
||||
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
|
||||
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
|
||||
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_observation(self, physics):
|
||||
obs = collections.OrderedDict()
|
||||
obs["qpos"] = self.get_qpos(physics)
|
||||
obs["qvel"] = self.get_qvel(physics)
|
||||
obs["env_state"] = self.get_env_state(physics)
|
||||
obs["images"] = {}
|
||||
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
|
||||
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
|
||||
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
|
||||
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TransferCubeTask(BimanualViperXTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
|
||||
# reset qpos, control and box position
|
||||
with physics.reset_context():
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
np.copyto(physics.data.ctrl, START_ARM_POSE)
|
||||
assert BOX_POSE[0] is not None
|
||||
physics.named.data.qpos[-7:] = BOX_POSE[0]
|
||||
# print(f"{BOX_POSE=}")
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_table = ("red_box", "table") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_right_gripper:
|
||||
reward = 1
|
||||
if touch_right_gripper and not touch_table: # lifted
|
||||
reward = 2
|
||||
if touch_left_gripper: # attempted transfer
|
||||
reward = 3
|
||||
if touch_left_gripper and not touch_table: # successful transfer
|
||||
reward = 4
|
||||
return reward
|
||||
|
||||
|
||||
class InsertionTask(BimanualViperXTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
|
||||
# reset qpos, control and box position
|
||||
with physics.reset_context():
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
np.copyto(physics.data.ctrl, START_ARM_POSE)
|
||||
assert BOX_POSE[0] is not None
|
||||
physics.named.data.qpos[-7 * 2 :] = BOX_POSE[0] # two objects
|
||||
# print(f"{BOX_POSE=}")
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether peg touches the pin
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_left_gripper = (
|
||||
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
)
|
||||
|
||||
peg_touch_table = ("red_peg", "table") in all_contact_pairs
|
||||
socket_touch_table = (
|
||||
("socket-1", "table") in all_contact_pairs
|
||||
or ("socket-2", "table") in all_contact_pairs
|
||||
or ("socket-3", "table") in all_contact_pairs
|
||||
or ("socket-4", "table") in all_contact_pairs
|
||||
)
|
||||
peg_touch_socket = (
|
||||
("red_peg", "socket-1") in all_contact_pairs
|
||||
or ("red_peg", "socket-2") in all_contact_pairs
|
||||
or ("red_peg", "socket-3") in all_contact_pairs
|
||||
or ("red_peg", "socket-4") in all_contact_pairs
|
||||
)
|
||||
pin_touched = ("red_peg", "pin") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_left_gripper and touch_right_gripper: # touch both
|
||||
reward = 1
|
||||
if (
|
||||
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
|
||||
): # grasp both
|
||||
reward = 2
|
||||
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
|
||||
reward = 3
|
||||
if pin_touched: # successful insertion
|
||||
reward = 4
|
||||
return reward
|
||||
263
lerobot/common/envs/aloha/tasks/sim_end_effector.py
Normal file
263
lerobot/common/envs/aloha/tasks/sim_end_effector.py
Normal file
@@ -0,0 +1,263 @@
|
||||
import collections
|
||||
|
||||
import numpy as np
|
||||
from dm_control.suite import base
|
||||
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
START_ARM_POSE,
|
||||
normalize_puppet_gripper_position,
|
||||
normalize_puppet_gripper_velocity,
|
||||
unnormalize_puppet_gripper_position,
|
||||
)
|
||||
from lerobot.common.envs.aloha.utils import sample_box_pose, sample_insertion_pose
|
||||
|
||||
"""
|
||||
Environment for simulated robot bi-manual manipulation, with end-effector control.
|
||||
Action space: [left_arm_pose (7), # position and quaternion for end effector
|
||||
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_pose (7), # position and quaternion for end effector
|
||||
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
|
||||
|
||||
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
|
||||
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_qpos (6), # absolute joint position
|
||||
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
|
||||
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
|
||||
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
|
||||
right_arm_qvel (6), # absolute joint velocity (rad)
|
||||
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
|
||||
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
|
||||
"""
|
||||
|
||||
|
||||
class BimanualViperXEndEffectorTask(base.Task):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
|
||||
def before_step(self, action, physics):
|
||||
a_len = len(action) // 2
|
||||
action_left = action[:a_len]
|
||||
action_right = action[a_len:]
|
||||
|
||||
# set mocap position and quat
|
||||
# left
|
||||
np.copyto(physics.data.mocap_pos[0], action_left[:3])
|
||||
np.copyto(physics.data.mocap_quat[0], action_left[3:7])
|
||||
# right
|
||||
np.copyto(physics.data.mocap_pos[1], action_right[:3])
|
||||
np.copyto(physics.data.mocap_quat[1], action_right[3:7])
|
||||
|
||||
# set gripper
|
||||
g_left_ctrl = unnormalize_puppet_gripper_position(action_left[7])
|
||||
g_right_ctrl = unnormalize_puppet_gripper_position(action_right[7])
|
||||
np.copyto(physics.data.ctrl, np.array([g_left_ctrl, -g_left_ctrl, g_right_ctrl, -g_right_ctrl]))
|
||||
|
||||
def initialize_robots(self, physics):
|
||||
# reset joint position
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
|
||||
# reset mocap to align with end effector
|
||||
# to obtain these numbers:
|
||||
# (1) make an ee_sim env and reset to the same start_pose
|
||||
# (2) get env._physics.named.data.xpos['vx300s_left/gripper_link']
|
||||
# get env._physics.named.data.xquat['vx300s_left/gripper_link']
|
||||
# repeat the same for right side
|
||||
np.copyto(physics.data.mocap_pos[0], [-0.31718881, 0.5, 0.29525084])
|
||||
np.copyto(physics.data.mocap_quat[0], [1, 0, 0, 0])
|
||||
# right
|
||||
np.copyto(physics.data.mocap_pos[1], np.array([0.31718881, 0.49999888, 0.29525084]))
|
||||
np.copyto(physics.data.mocap_quat[1], [1, 0, 0, 0])
|
||||
|
||||
# reset gripper control
|
||||
close_gripper_control = np.array(
|
||||
[
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
-PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
-PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
]
|
||||
)
|
||||
np.copyto(physics.data.ctrl, close_gripper_control)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_qpos(physics):
|
||||
qpos_raw = physics.data.qpos.copy()
|
||||
left_qpos_raw = qpos_raw[:8]
|
||||
right_qpos_raw = qpos_raw[8:16]
|
||||
left_arm_qpos = left_qpos_raw[:6]
|
||||
right_arm_qpos = right_qpos_raw[:6]
|
||||
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
|
||||
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
|
||||
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
|
||||
|
||||
@staticmethod
|
||||
def get_qvel(physics):
|
||||
qvel_raw = physics.data.qvel.copy()
|
||||
left_qvel_raw = qvel_raw[:8]
|
||||
right_qvel_raw = qvel_raw[8:16]
|
||||
left_arm_qvel = left_qvel_raw[:6]
|
||||
right_arm_qvel = right_qvel_raw[:6]
|
||||
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
|
||||
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
|
||||
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_observation(self, physics):
|
||||
# note: it is important to do .copy()
|
||||
obs = collections.OrderedDict()
|
||||
obs["qpos"] = self.get_qpos(physics)
|
||||
obs["qvel"] = self.get_qvel(physics)
|
||||
obs["env_state"] = self.get_env_state(physics)
|
||||
obs["images"] = {}
|
||||
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
|
||||
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
|
||||
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
|
||||
# used in scripted policy to obtain starting pose
|
||||
obs["mocap_pose_left"] = np.concatenate(
|
||||
[physics.data.mocap_pos[0], physics.data.mocap_quat[0]]
|
||||
).copy()
|
||||
obs["mocap_pose_right"] = np.concatenate(
|
||||
[physics.data.mocap_pos[1], physics.data.mocap_quat[1]]
|
||||
).copy()
|
||||
|
||||
# used when replaying joint trajectory
|
||||
obs["gripper_ctrl"] = physics.data.ctrl.copy()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TransferCubeEndEffectorTask(BimanualViperXEndEffectorTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
self.initialize_robots(physics)
|
||||
# randomize box position
|
||||
cube_pose = sample_box_pose()
|
||||
box_start_idx = physics.model.name2id("red_box_joint", "joint")
|
||||
np.copyto(physics.data.qpos[box_start_idx : box_start_idx + 7], cube_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_table = ("red_box", "table") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_right_gripper:
|
||||
reward = 1
|
||||
if touch_right_gripper and not touch_table: # lifted
|
||||
reward = 2
|
||||
if touch_left_gripper: # attempted transfer
|
||||
reward = 3
|
||||
if touch_left_gripper and not touch_table: # successful transfer
|
||||
reward = 4
|
||||
return reward
|
||||
|
||||
|
||||
class InsertionEndEffectorTask(BimanualViperXEndEffectorTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
self.initialize_robots(physics)
|
||||
# randomize peg and socket position
|
||||
peg_pose, socket_pose = sample_insertion_pose()
|
||||
|
||||
def id2index(j_id):
|
||||
return 16 + (j_id - 16) * 7 # first 16 is robot qpos, 7 is pose dim # hacky
|
||||
|
||||
peg_start_id = physics.model.name2id("red_peg_joint", "joint")
|
||||
peg_start_idx = id2index(peg_start_id)
|
||||
np.copyto(physics.data.qpos[peg_start_idx : peg_start_idx + 7], peg_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
socket_start_id = physics.model.name2id("blue_socket_joint", "joint")
|
||||
socket_start_idx = id2index(socket_start_id)
|
||||
np.copyto(physics.data.qpos[socket_start_idx : socket_start_idx + 7], socket_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether peg touches the pin
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_left_gripper = (
|
||||
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
)
|
||||
|
||||
peg_touch_table = ("red_peg", "table") in all_contact_pairs
|
||||
socket_touch_table = (
|
||||
("socket-1", "table") in all_contact_pairs
|
||||
or ("socket-2", "table") in all_contact_pairs
|
||||
or ("socket-3", "table") in all_contact_pairs
|
||||
or ("socket-4", "table") in all_contact_pairs
|
||||
)
|
||||
peg_touch_socket = (
|
||||
("red_peg", "socket-1") in all_contact_pairs
|
||||
or ("red_peg", "socket-2") in all_contact_pairs
|
||||
or ("red_peg", "socket-3") in all_contact_pairs
|
||||
or ("red_peg", "socket-4") in all_contact_pairs
|
||||
)
|
||||
pin_touched = ("red_peg", "pin") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_left_gripper and touch_right_gripper: # touch both
|
||||
reward = 1
|
||||
if (
|
||||
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
|
||||
): # grasp both
|
||||
reward = 2
|
||||
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
|
||||
reward = 3
|
||||
if pin_touched: # successful insertion
|
||||
reward = 4
|
||||
return reward
|
||||
@@ -27,7 +27,7 @@ def get_sinusoid_encoding_table(n_position, d_hid):
|
||||
class DETRVAE(nn.Module):
|
||||
"""This is the DETR module that performs object detection"""
|
||||
|
||||
def __init__(self, backbones, transformer, encoder, state_dim, num_queries, camera_names):
|
||||
def __init__(self, backbones, transformer, encoder, state_dim, action_dim, num_queries, camera_names):
|
||||
"""Initializes the model.
|
||||
Parameters:
|
||||
backbones: torch module of the backbone to be used. See backbone.py
|
||||
@@ -43,17 +43,18 @@ class DETRVAE(nn.Module):
|
||||
self.transformer = transformer
|
||||
self.encoder = encoder
|
||||
hidden_dim = transformer.d_model
|
||||
self.action_head = nn.Linear(hidden_dim, state_dim)
|
||||
self.action_head = nn.Linear(hidden_dim, action_dim)
|
||||
self.is_pad_head = nn.Linear(hidden_dim, 1)
|
||||
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
||||
if backbones is not None:
|
||||
self.input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1)
|
||||
self.backbones = nn.ModuleList(backbones)
|
||||
self.input_proj_robot_state = nn.Linear(14, hidden_dim)
|
||||
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim)
|
||||
else:
|
||||
# input_dim = 14 + 7 # robot_state + env_state
|
||||
self.input_proj_robot_state = nn.Linear(14, hidden_dim)
|
||||
self.input_proj_env_state = nn.Linear(7, hidden_dim)
|
||||
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim)
|
||||
# TODO(rcadene): understand what is env_state, and why it needs to be 7
|
||||
self.input_proj_env_state = nn.Linear(state_dim // 2, hidden_dim)
|
||||
self.pos = torch.nn.Embedding(2, hidden_dim)
|
||||
self.backbones = None
|
||||
|
||||
@@ -180,8 +181,6 @@ def build_encoder(args):
|
||||
|
||||
|
||||
def build(args):
|
||||
state_dim = 14 # TODO hardcode
|
||||
|
||||
# From state
|
||||
# backbone = None # from state for now, no need for conv nets
|
||||
# From image
|
||||
@@ -197,7 +196,8 @@ def build(args):
|
||||
backbones,
|
||||
transformer,
|
||||
encoder,
|
||||
state_dim=state_dim,
|
||||
state_dim=args.state_dim,
|
||||
action_dim=args.action_dim,
|
||||
num_queries=args.num_queries,
|
||||
camera_names=args.camera_names,
|
||||
)
|
||||
|
||||
@@ -25,29 +25,6 @@ def build_act_model_and_optimizer(cfg):
|
||||
return model, optimizer
|
||||
|
||||
|
||||
# def build_CNNMLP_model_and_optimizer(cfg):
|
||||
# parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
|
||||
# args = parser.parse_args()
|
||||
|
||||
# for k, v in cfg.items():
|
||||
# setattr(args, k, v)
|
||||
|
||||
# model = build_CNNMLP_model(args)
|
||||
# model.cuda()
|
||||
|
||||
# param_dicts = [
|
||||
# {"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]},
|
||||
# {
|
||||
# "params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
|
||||
# "lr": args.lr_backbone,
|
||||
# },
|
||||
# ]
|
||||
# optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
|
||||
# weight_decay=args.weight_decay)
|
||||
|
||||
# return model, optimizer
|
||||
|
||||
|
||||
def kl_divergence(mu, logvar):
|
||||
batch_size = mu.size(0)
|
||||
assert batch_size != 0
|
||||
@@ -65,9 +42,10 @@ def kl_divergence(mu, logvar):
|
||||
|
||||
|
||||
class ActionChunkingTransformerPolicy(nn.Module):
|
||||
def __init__(self, cfg, device):
|
||||
def __init__(self, cfg, device, n_action_steps=1):
|
||||
super().__init__()
|
||||
self.cfg = cfg
|
||||
self.n_action_steps = n_action_steps
|
||||
self.device = device
|
||||
self.model, self.optimizer = build_act_model_and_optimizer(cfg)
|
||||
self.kl_weight = self.cfg.kl_weight
|
||||
@@ -179,11 +157,34 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
||||
observation["image"] = observation["image"].unsqueeze(0)
|
||||
observation["state"] = observation["state"].unsqueeze(0)
|
||||
|
||||
# TODO(rcadene): remove hack
|
||||
# add 1 camera dimension
|
||||
observation["image"] = observation["image"].unsqueeze(1)
|
||||
|
||||
obs_dict = {
|
||||
"image": observation["image"],
|
||||
"agent_pos": observation["state"],
|
||||
}
|
||||
action = self._forward(qpos=obs_dict["agent_pos"], image=obs_dict["image"])
|
||||
|
||||
if self.cfg.temporal_agg:
|
||||
# TODO(rcadene): implement temporal aggregation
|
||||
raise NotImplementedError()
|
||||
# all_time_actions[[t], t:t+num_queries] = action
|
||||
# actions_for_curr_step = all_time_actions[:, t]
|
||||
# actions_populated = torch.all(actions_for_curr_step != 0, axis=1)
|
||||
# actions_for_curr_step = actions_for_curr_step[actions_populated]
|
||||
# k = 0.01
|
||||
# exp_weights = np.exp(-k * np.arange(len(actions_for_curr_step)))
|
||||
# exp_weights = exp_weights / exp_weights.sum()
|
||||
# exp_weights = torch.from_numpy(exp_weights).cuda().unsqueeze(dim=1)
|
||||
# raw_action = (actions_for_curr_step * exp_weights).sum(dim=0, keepdim=True)
|
||||
|
||||
# remove bsize=1
|
||||
action = action.squeeze(0)
|
||||
|
||||
# take first predicted action or n first actions
|
||||
action = action[0] if self.n_action_steps == 1 else action[: self.n_action_steps]
|
||||
return action
|
||||
|
||||
def _forward(self, qpos, image, actions=None, is_pad=None):
|
||||
@@ -209,46 +210,3 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
||||
else:
|
||||
action, _, (_, _) = self.model(qpos, image, env_state) # no action, sample from prior
|
||||
return action
|
||||
|
||||
|
||||
# class CNNMLPPolicy(nn.Module):
|
||||
# def __init__(self, cfg):
|
||||
# super().__init__()
|
||||
# model, optimizer = build_CNNMLP_model_and_optimizer(cfg)
|
||||
# self.model = model # decoder
|
||||
# self.optimizer = optimizer
|
||||
|
||||
# def __call__(self, qpos, image, actions=None, is_pad=None):
|
||||
# env_state = None # TODO
|
||||
# normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
||||
# std=[0.229, 0.224, 0.225])
|
||||
# image = normalize(image)
|
||||
# if actions is not None: # training time
|
||||
# actions = actions[:, 0]
|
||||
# a_hat = self.model(qpos, image, env_state, actions)
|
||||
# mse = F.mse_loss(actions, a_hat)
|
||||
# loss_dict = dict()
|
||||
# loss_dict['mse'] = mse
|
||||
# loss_dict['loss'] = loss_dict['mse']
|
||||
# return loss_dict
|
||||
# else: # inference time
|
||||
# a_hat = self.model(qpos, image, env_state) # no action, sample from prior
|
||||
# return a_hat
|
||||
|
||||
# def configure_optimizers(self):
|
||||
# return self.optimizer
|
||||
|
||||
# def kl_divergence(mu, logvar):
|
||||
# batch_size = mu.size(0)
|
||||
# assert batch_size != 0
|
||||
# if mu.data.ndimension() == 4:
|
||||
# mu = mu.view(mu.size(0), mu.size(1))
|
||||
# if logvar.data.ndimension() == 4:
|
||||
# logvar = logvar.view(logvar.size(0), logvar.size(1))
|
||||
|
||||
# klds = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
|
||||
# total_kld = klds.sum(1).mean(0, True)
|
||||
# dimension_wise_kld = klds.mean(0)
|
||||
# mean_kld = klds.mean(1).mean(0, True)
|
||||
|
||||
# return total_kld, dimension_wise_kld, mean_kld
|
||||
|
||||
@@ -20,7 +20,9 @@ def make_policy(cfg):
|
||||
elif cfg.policy.name == "act":
|
||||
from lerobot.common.policies.act.policy import ActionChunkingTransformerPolicy
|
||||
|
||||
policy = ActionChunkingTransformerPolicy(cfg.policy, cfg.device)
|
||||
policy = ActionChunkingTransformerPolicy(
|
||||
cfg.policy, cfg.device, n_action_steps=cfg.n_action_steps + cfg.n_latency_steps
|
||||
)
|
||||
else:
|
||||
raise ValueError(cfg.policy.name)
|
||||
|
||||
|
||||
4
lerobot/configs/env/aloha.yaml
vendored
4
lerobot/configs/env/aloha.yaml
vendored
@@ -21,5 +21,5 @@ env:
|
||||
fps: ${fps}
|
||||
|
||||
policy:
|
||||
state_dim: 2
|
||||
action_dim: 2
|
||||
state_dim: 14
|
||||
action_dim: 14
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
# @package _global_
|
||||
|
||||
state_dim: 14
|
||||
|
||||
offline_steps: 1344000
|
||||
online_steps: 0
|
||||
|
||||
@@ -12,7 +10,9 @@ log_freq: 250
|
||||
|
||||
horizon: 100
|
||||
n_obs_steps: 1
|
||||
n_action_steps: 1
|
||||
n_latency_steps: 0
|
||||
# when temporal_agg=False, n_action_steps=horizon
|
||||
n_action_steps: ${horizon}
|
||||
|
||||
policy:
|
||||
name: act
|
||||
@@ -48,3 +48,8 @@ policy:
|
||||
utd: 1
|
||||
|
||||
n_obs_steps: ${n_obs_steps}
|
||||
|
||||
temporal_agg: false
|
||||
|
||||
state_dim: ???
|
||||
action_dim: ???
|
||||
|
||||
Reference in New Issue
Block a user