feat(policies): add Nvidia Gr00t N1.5 model (#2292)

* feat(policies): add Nvidia Gr00t N1.5 model

Co-authored-by: lbenhorin <lbenhorin@nvidia.com>
Co-authored-by: Aravindh <aravindhs@nvidia.com>
Co-authored-by: nv-sachdevkartik <ksachdev@nvidia.com>
Co-authored-by: youliangt <youliangt@nvidia.com>
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>
Co-authored-by: Jade Choghari <chogharijade@gmail.com>

* fix(docs): add groot to index

Co-authored-by: sachdevkartik <sachdev.kartik25@gmail.com>

---------

Co-authored-by: lbenhorin <lbenhorin@nvidia.com>
Co-authored-by: Aravindh <aravindhs@nvidia.com>
Co-authored-by: nv-sachdevkartik <ksachdev@nvidia.com>
Co-authored-by: youliangt <youliangt@nvidia.com>
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>
Co-authored-by: Jade Choghari <chogharijade@gmail.com>
Co-authored-by: sachdevkartik <sachdev.kartik25@gmail.com>
This commit is contained in:
Steven Palma
2025-10-23 13:50:30 +02:00
committed by GitHub
parent 306429a85b
commit be46bdea8f
26 changed files with 4766 additions and 6 deletions

View File

@@ -78,7 +78,7 @@ jobs:
python-version: ${{ env.PYTHON_VERSION }}
- name: Install lerobot with all extras
run: uv sync --all-extras
run: uv sync --all-extras --no-extra groot # TODO(Steven): Make flash-attn optional
- name: Run pytest (all extras)
run: uv run pytest tests -vv --maxfail=10

View File

@@ -37,6 +37,8 @@
title: π₀ (Pi0)
- local: pi05
title: π₀.₅ (Pi05)
- local: groot
title: Nvidia Gr00t N1.5
title: "Policies"
- sections:
- local: il_sim

122
docs/source/groot.mdx Normal file
View File

@@ -0,0 +1,122 @@
# Gr00t N1.5 Policy
Gr00t N1.5 is an open foundation model from NVIDIA designed for generalized humanoid robot reasoning and skills. It is a cross-embodiment model that accepts multimodal input, including language and images, to perform manipulation tasks in diverse environments.
This document outlines the specifics of its integration and usage within the LeRobot framework.
## Model Overview
NVIDIA Isaac GR00T N1.5 is an upgraded version of the GR00T N1 foundation model. It is built to improve generalization and language-following abilities for humanoid robots.
Developers and researchers can post-train GR00T N1.5 with their own real or synthetic data to adapt it for specific humanoid robots or tasks.
GR00T N1.5 (specifically the GR00T-N1.5-3B model) is built using pre-trained vision and language encoders. It utilizes a flow matching action transformer to model a chunk of actions, conditioned on vision, language, and proprioception.
Its strong performance comes from being trained on an expansive and diverse humanoid dataset, which includes:
- Real captured data from robots.
- Synthetic data generated using NVIDIA Isaac GR00T Blueprint.
- Internet-scale video data.
This approach allows the model to be highly adaptable through post-training for specific embodiments, tasks, and environments.
## Installation Requirements
As of today, Gr00t N1.5 requires flash attention for it's internal working.
We are working on making this optional, but in the meantime that means that we require an extra installation step and it can only be used in CUDA enabled devices.
1. Following the Environment Setup of our [Installation Guide](./installation). **Attention** don't install `lerobot` in this step.
2. Install [Flash Attention](https://github.com/Dao-AILab/flash-attention) by running:
```bash
# Check https://pytorch.org/get-started/locally/ for your system
pip install "torch>=2.2.1,<2.8.0" "torchvision>=0.21.0,<0.23.0" # --index-url https://download.pytorch.org/whl/cu1XX
pip install ninja "packaging>=24.2,<26.0" # flash attention dependencies
pip install "flash-attn>=2.5.9,<3.0.0" --no-build-isolation
python -c "import flash_attn; print(f'Flash Attention {flash_attn.__version__} imported successfully')"
```
3. Install LeRobot by running:
```bash
pip install lerobot[groot] # consider also installing libero,dev and test tags
```
## Usage
To use Gr00t in your LeRobot configuration, specify the policy type as:
```python
policy.type=groot
```
## Training
### Training Command Example
Here's a complete training command for finetuning the base Gr00t model on your own dataset:
```bash
# Using a multi-GPU setup
accelerate launch \
--multi_gpu \
--num_processes=$NUM_GPUS \
$(which lerobot-train) \
--output_dir=$OUTPUT_DIR \
--save_checkpoint=true \
--batch_size=$BATCH_SIZE \
--steps=$NUM_STEPS \
--save_freq=$SAVE_FREQ \
--log_freq=$LOG_FREQ \
--policy.push_to_hub=true \
--policy.type=groot \
--policy.repo_id=$REPO_ID \
--policy.tune_diffusion_model=false \
--dataset.repo_id=$DATASET_ID \
--wandb.enable=true \
--wandb.disable_artifact=true \
--job_name=$JOB_NAME
```
## Performance Results
### Libero Benchmark Results
Gr00t has demonstrated strong performance on the Libero benchmark suite. To compare and test its LeRobot implementation, we finetuned the Gr00t N1.5 model for 20k steps on the Libero dataset and compared the results to the Gr00t reference results.
| Benchmark | LeRobot Implementation | Gr00t Reference |
| ------------------ | ---------------------- | --------------- |
| **Libero Spatial** | 82% | 92.0% |
| **Libero Object** | 99% | 92.0% |
| **Libero Long** | 72% | 76.0% |
| **Average** | 84% | 87.0% |
These results demonstrate Gr00t's strong generalization capabilities across diverse robotic manipulation tasks. To reproduce these results, you can follow the instructions in the [Libero](https://huggingface.co/docs/lerobot/libero) section.
### Evaluate in your hardware setup
Once you have trained your model using your parameters you can run inference in your downstream task. Follow our by following for the downstream hardware task, you can follow our instructions in [Imitation Learning for Robots](./il_robots). For example:
```bash
lerobot-record \
--robot.type=bi_so100_follower \
--robot.left_arm_port=/dev/ttyACM1 \
--robot.right_arm_port=/dev/ttyACM0 \
--robot.id=bimanual_follower \
--robot.cameras='{ right: {"type": "opencv", "index_or_path": 0, "width": 640, "height": 480, "fps": 30},
left: {"type": "opencv", "index_or_path": 2, "width": 640, "height": 480, "fps": 30},
top: {"type": "opencv", "index_or_path": 4, "width": 640, "height": 480, "fps": 30},
}' \
--display_data=true \
--dataset.repo_id=<user>/eval_groot-bimanual \
--dataset.num_episodes=10 \
--dataset.single_task="Grab and handover the red cube to the other arm"
--policy.path=<user>/groot-bimanual # your trained model
--dataset.episode_time_s=30
--dataset.reset_time_s=10
```
## License
This model follows the **Apache 2.0 License**, consistent with the original [Gr00t repository](https://github.com/NVIDIA/Isaac-GR00T).

View File

@@ -0,0 +1,27 @@
## Research Paper
Paper: https://research.nvidia.com/labs/gear/gr00t-n1_5/
## Repository
Code: https://github.com/NVIDIA/Isaac-GR00T
## Citation
```bibtex
@inproceedings{gr00tn1_2025,
archivePrefix = {arxiv},
eprint = {2503.14734},
title = {{GR00T} {N1}: An Open Foundation Model for Generalist Humanoid Robots},
author = {NVIDIA and Johan Bjorck andFernando Castañeda, Nikita Cherniadev and Xingye Da and Runyu Ding and Linxi "Jim" Fan and Yu Fang and Dieter Fox and Fengyuan Hu and Spencer Huang and Joel Jang and Zhenyu Jiang and Jan Kautz and Kaushil Kundalia and Lawrence Lao and Zhiqi Li and Zongyu Lin and Kevin Lin and Guilin Liu and Edith Llontop and Loic Magne and Ajay Mandlekar and Avnish Narayan and Soroush Nasiriany and Scott Reed and You Liang Tan and Guanzhi Wang and Zu Wang and Jing Wang and Qi Wang and Jiannan Xiang and Yuqi Xie and Yinzhen Xu and Zhenjia Xu and Seonghyeon Ye and Zhiding Yu and Ao Zhang and Hao Zhang and Yizhou Zhao and Ruijie Zheng and Yuke Zhu},
month = {March},
year = {2025},
booktitle = {ArXiv Preprint},
}
```
## Additional Resources
Blog: https://developer.nvidia.com/isaac/gr00t
Hugging Face Model: https://huggingface.co/nvidia/GR00T-N1.5-3B

View File

@@ -118,6 +118,17 @@ phone = ["hebi-py>=2.8.0,<2.12.0", "teleop>=0.1.0,<0.2.0"]
# Policies
pi = ["transformers @ git+https://github.com/huggingface/transformers.git@fix/lerobot_openpi"]
smolvla = ["lerobot[transformers-dep]", "num2words>=0.5.14,<0.6.0", "accelerate>=1.7.0,<2.0.0", "safetensors>=0.4.3,<1.0.0"]
groot = [
"lerobot[transformers-dep]",
"peft>=0.13.0,<1.0.0",
"dm-tree>=0.1.8,<1.0.0",
"timm>=1.0.0,<1.1.0",
"safetensors>=0.4.3,<1.0.0",
"Pillow>=10.0.0,<13.0.0",
"decord>=0.6.0,<1.0.0; (platform_machine == 'AMD64' or platform_machine == 'x86_64')",
"ninja>=1.11.1,<2.0.0",
"flash-attn>=2.5.9,<3.0.0 ; sys_platform != 'darwin'"
]
hilserl = ["lerobot[transformers-dep]", "gym-hil>=0.1.13,<0.2.0", "lerobot[grpcio-dep]", "lerobot[placo-dep]"]
# Features
@@ -145,6 +156,7 @@ all = [
"lerobot[intelrealsense]",
"lerobot[pi]",
"lerobot[smolvla]",
# "lerobot[groot]", TODO(Steven): Gr00t requires specific installation instructions for flash-attn
"lerobot[hilserl]",
"lerobot[async]",
"lerobot[dev]",
@@ -243,6 +255,7 @@ default.extend-ignore-identifiers-re = [
"pn",
"ser",
"ein",
"thw",
"inpt",
]

View File

@@ -14,6 +14,7 @@
from .act.configuration_act import ACTConfig as ACTConfig
from .diffusion.configuration_diffusion import DiffusionConfig as DiffusionConfig
from .groot.configuration_groot import GrootConfig as GrootConfig
from .pi0.configuration_pi0 import PI0Config as PI0Config
from .pi05.configuration_pi05 import PI05Config as PI05Config
from .smolvla.configuration_smolvla import SmolVLAConfig as SmolVLAConfig
@@ -29,4 +30,5 @@ __all__ = [
"SmolVLAConfig",
"TDMPCConfig",
"VQBeTConfig",
"GrootConfig",
]

View File

@@ -30,6 +30,7 @@ from lerobot.envs.configs import EnvConfig
from lerobot.envs.utils import env_to_policy_features
from lerobot.policies.act.configuration_act import ACTConfig
from lerobot.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.policies.groot.configuration_groot import GrootConfig
from lerobot.policies.pi0.configuration_pi0 import PI0Config
from lerobot.policies.pi05.configuration_pi05 import PI05Config
from lerobot.policies.pretrained import PreTrainedPolicy
@@ -101,6 +102,10 @@ def get_policy_class(name: str) -> type[PreTrainedPolicy]:
from lerobot.policies.smolvla.modeling_smolvla import SmolVLAPolicy
return SmolVLAPolicy
elif name == "groot":
from lerobot.policies.groot.modeling_groot import GrootPolicy
return GrootPolicy
else:
raise NotImplementedError(f"Policy with name {name} is not implemented.")
@@ -142,6 +147,8 @@ def make_policy_config(policy_type: str, **kwargs) -> PreTrainedConfig:
return SmolVLAConfig(**kwargs)
elif policy_type == "reward_classifier":
return RewardClassifierConfig(**kwargs)
elif policy_type == "groot":
return GrootConfig(**kwargs)
else:
raise ValueError(f"Policy type '{policy_type}' is not available.")
@@ -199,6 +206,27 @@ def make_pre_post_processors(
policy configuration type.
"""
if pretrained_path:
# TODO(Steven): Temporary patch, implement correctly the processors for Gr00t
if isinstance(policy_cfg, GrootConfig):
# GROOT handles normalization in groot_pack_inputs_v3 step
# Need to override both stats AND normalize_min_max since saved config might be empty
preprocessor_overrides = {}
postprocessor_overrides = {}
preprocessor_overrides["groot_pack_inputs_v3"] = {
"stats": kwargs.get("dataset_stats"),
"normalize_min_max": True,
}
# Also ensure postprocessing slices to env action dim and unnormalizes with dataset stats
env_action_dim = policy_cfg.output_features["action"].shape[0]
postprocessor_overrides["groot_action_unpack_unnormalize_v1"] = {
"stats": kwargs.get("dataset_stats"),
"normalize_min_max": True,
"env_action_dim": env_action_dim,
}
kwargs["preprocessor_overrides"] = preprocessor_overrides
kwargs["postprocessor_overrides"] = postprocessor_overrides
return (
PolicyProcessorPipeline.from_pretrained(
pretrained_model_name_or_path=pretrained_path,
@@ -293,6 +321,14 @@ def make_pre_post_processors(
dataset_stats=kwargs.get("dataset_stats"),
)
elif isinstance(policy_cfg, GrootConfig):
from lerobot.policies.groot.processor_groot import make_groot_pre_post_processors
processors = make_groot_pre_post_processors(
config=policy_cfg,
dataset_stats=kwargs.get("dataset_stats"),
)
else:
raise NotImplementedError(f"Processor for policy type '{policy_cfg.type}' is not implemented.")

View File

@@ -0,0 +1 @@
../../../../docs/source/policy_groot_README.md

View File

@@ -0,0 +1,21 @@
#!/usr/bin/env python
# Copyright 2025 Nvidia and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .configuration_groot import GrootConfig
from .modeling_groot import GrootPolicy
from .processor_groot import make_groot_pre_post_processors
__all__ = ["GrootConfig", "GrootPolicy", "make_groot_pre_post_processors"]

View File

@@ -0,0 +1,14 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@@ -0,0 +1,54 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
def swish(x):
return x * torch.sigmoid(x)
class SinusoidalPositionalEncoding(nn.Module):
"""
Produces a sinusoidal encoding of shape (B, T, w)
given timesteps of shape (B, T).
"""
def __init__(self, embedding_dim):
super().__init__()
self.embedding_dim = embedding_dim
def forward(self, timesteps):
# timesteps: shape (B, T)
# We'll compute sin/cos frequencies across dim T
timesteps = timesteps.float() # ensure float
b, t = timesteps.shape
device = timesteps.device
half_dim = self.embedding_dim // 2
# typical log space frequencies for sinusoidal encoding
exponent = -torch.arange(half_dim, dtype=torch.float, device=device) * (
torch.log(torch.tensor(10000.0)) / half_dim
)
# Expand timesteps to (B, T, 1) then multiply
freqs = timesteps.unsqueeze(-1) * exponent.exp() # (B, T, half_dim)
sin = torch.sin(freqs)
cos = torch.cos(freqs)
enc = torch.cat([sin, cos], dim=-1) # (B, T, w)
return enc

View File

@@ -0,0 +1,370 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F # noqa: N812
from diffusers import ConfigMixin, ModelMixin
from diffusers.configuration_utils import register_to_config
from diffusers.models.attention import Attention, FeedForward
from diffusers.models.embeddings import (
SinusoidalPositionalEmbedding,
TimestepEmbedding,
Timesteps,
)
from torch import nn
class TimestepEncoder(nn.Module):
def __init__(self, embedding_dim, compute_dtype=torch.float32):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
def forward(self, timesteps):
dtype = next(self.parameters()).dtype
timesteps_proj = self.time_proj(timesteps).to(dtype)
timesteps_emb = self.timestep_embedder(timesteps_proj) # (N, D)
return timesteps_emb
class AdaLayerNorm(nn.Module):
def __init__(
self,
embedding_dim: int,
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-5,
chunk_dim: int = 0,
):
super().__init__()
self.chunk_dim = chunk_dim
output_dim = embedding_dim * 2
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, output_dim)
self.norm = nn.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine)
def forward(
self,
x: torch.Tensor,
temb: torch.Tensor | None = None,
) -> torch.Tensor:
temb = self.linear(self.silu(temb))
scale, shift = temb.chunk(2, dim=1)
x = self.norm(x) * (1 + scale[:, None]) + shift[:, None]
return x
class BasicTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: int | None = None,
activation_fn: str = "geglu",
attention_bias: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
norm_eps: float = 1e-5,
final_dropout: bool = False,
attention_type: str = "default",
positional_embeddings: str | None = None,
num_positional_embeddings: int | None = None,
ff_inner_dim: int | None = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
):
super().__init__()
self.dim = dim
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.dropout = dropout
self.cross_attention_dim = cross_attention_dim
self.activation_fn = activation_fn
self.attention_bias = attention_bias
self.norm_elementwise_affine = norm_elementwise_affine
self.positional_embeddings = positional_embeddings
self.num_positional_embeddings = num_positional_embeddings
self.norm_type = norm_type
if positional_embeddings and (num_positional_embeddings is None):
raise ValueError(
"If `positional_embeddings` type is defined, `num_positional_embeddings` must also be defined."
)
if positional_embeddings == "sinusoidal":
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
else:
self.pos_embed = None
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if norm_type == "ada_norm":
self.norm1 = AdaLayerNorm(dim)
else:
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
)
# 3. Feed-forward
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
if final_dropout:
self.final_dropout = nn.Dropout(dropout)
else:
self.final_dropout = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor | None = None,
encoder_hidden_states: torch.Tensor | None = None,
encoder_attention_mask: torch.Tensor | None = None,
temb: torch.LongTensor | None = None,
) -> torch.Tensor:
# 0. Self-Attention
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm1(hidden_states, temb)
else:
norm_hidden_states = self.norm1(hidden_states)
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
# encoder_attention_mask=encoder_attention_mask,
)
if self.final_dropout:
attn_output = self.final_dropout(attn_output)
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 4. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
ff_output = self.ff(norm_hidden_states)
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
class DiT(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 8,
attention_head_dim: int = 64,
output_dim: int = 26,
num_layers: int = 12,
dropout: float = 0.1,
attention_bias: bool = True,
activation_fn: str = "gelu-approximate",
num_embeds_ada_norm: int | None = 1000,
upcast_attention: bool = False,
norm_type: str = "ada_norm",
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-5,
max_num_positional_embeddings: int = 512,
compute_dtype=torch.float32,
final_dropout: bool = True,
positional_embeddings: str | None = "sinusoidal",
interleave_self_attention=False,
cross_attention_dim: int | None = None,
):
super().__init__()
self.attention_head_dim = attention_head_dim
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.gradient_checkpointing = False
# Timestep encoder
self.timestep_encoder = TimestepEncoder(
embedding_dim=self.inner_dim, compute_dtype=self.config.compute_dtype
)
all_blocks = []
for idx in range(self.config.num_layers):
use_self_attn = idx % 2 == 1 and interleave_self_attention
curr_cross_attention_dim = cross_attention_dim if not use_self_attn else None
all_blocks += [
BasicTransformerBlock(
self.inner_dim,
self.config.num_attention_heads,
self.config.attention_head_dim,
dropout=self.config.dropout,
activation_fn=self.config.activation_fn,
attention_bias=self.config.attention_bias,
upcast_attention=self.config.upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=self.config.norm_elementwise_affine,
norm_eps=self.config.norm_eps,
positional_embeddings=positional_embeddings,
num_positional_embeddings=self.config.max_num_positional_embeddings,
final_dropout=final_dropout,
cross_attention_dim=curr_cross_attention_dim,
)
]
self.transformer_blocks = nn.ModuleList(all_blocks)
# Output blocks
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
self.proj_out_2 = nn.Linear(self.inner_dim, self.config.output_dim)
print(
"Total number of DiT parameters: ",
sum(p.numel() for p in self.parameters() if p.requires_grad),
)
def forward(
self,
hidden_states: torch.Tensor, # Shape: (B, T, D)
encoder_hidden_states: torch.Tensor, # Shape: (B, S, D)
timestep: torch.LongTensor | None = None,
encoder_attention_mask: torch.Tensor | None = None,
return_all_hidden_states: bool = False,
):
# Encode timesteps
temb = self.timestep_encoder(timestep)
# Process through transformer blocks - single pass through the blocks
hidden_states = hidden_states.contiguous()
encoder_hidden_states = encoder_hidden_states.contiguous()
all_hidden_states = [hidden_states]
# Process through transformer blocks
for idx, block in enumerate(self.transformer_blocks):
if idx % 2 == 1 and self.config.interleave_self_attention:
hidden_states = block(
hidden_states,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
temb=temb,
)
else:
hidden_states = block(
hidden_states,
attention_mask=None,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=None,
temb=temb,
)
all_hidden_states.append(hidden_states)
# Output processing
conditioning = temb
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
if return_all_hidden_states:
return self.proj_out_2(hidden_states), all_hidden_states
else:
return self.proj_out_2(hidden_states)
class SelfAttentionTransformer(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 8,
attention_head_dim: int = 64,
output_dim: int = 26,
num_layers: int = 12,
dropout: float = 0.1,
attention_bias: bool = True,
activation_fn: str = "gelu-approximate",
num_embeds_ada_norm: int | None = 1000,
upcast_attention: bool = False,
max_num_positional_embeddings: int = 512,
compute_dtype=torch.float32,
final_dropout: bool = True,
positional_embeddings: str | None = "sinusoidal",
interleave_self_attention=False,
):
super().__init__()
self.attention_head_dim = attention_head_dim
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.gradient_checkpointing = False
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
self.config.num_attention_heads,
self.config.attention_head_dim,
dropout=self.config.dropout,
activation_fn=self.config.activation_fn,
attention_bias=self.config.attention_bias,
upcast_attention=self.config.upcast_attention,
positional_embeddings=positional_embeddings,
num_positional_embeddings=self.config.max_num_positional_embeddings,
final_dropout=final_dropout,
)
for _ in range(self.config.num_layers)
]
)
print(
"Total number of SelfAttentionTransformer parameters: ",
sum(p.numel() for p in self.parameters() if p.requires_grad),
)
def forward(
self,
hidden_states: torch.Tensor, # Shape: (B, T, D)
return_all_hidden_states: bool = False,
):
# Process through transformer blocks - single pass through the blocks
hidden_states = hidden_states.contiguous()
all_hidden_states = [hidden_states]
# Process through transformer blocks
for _idx, block in enumerate(self.transformer_blocks):
hidden_states = block(hidden_states)
all_hidden_states.append(hidden_states)
if return_all_hidden_states:
return hidden_states, all_hidden_states
else:
return hidden_states

View File

@@ -0,0 +1,406 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import TYPE_CHECKING
import torch
import torch.nn.functional as F # noqa: N812
from torch import nn
from torch.distributions import Beta
from lerobot.utils.import_utils import _transformers_available
# Conditional import for type checking and lazy loading
if TYPE_CHECKING or _transformers_available:
from transformers import PretrainedConfig
from transformers.feature_extraction_utils import BatchFeature
else:
PretrainedConfig = object
BatchFeature = None
from lerobot.policies.groot.action_head.action_encoder import (
SinusoidalPositionalEncoding,
swish,
)
from .cross_attention_dit import DiT, SelfAttentionTransformer
class CategorySpecificLinear(nn.Module):
def __init__(self, num_categories, input_dim, hidden_dim):
super().__init__()
self.num_categories = num_categories
# For each category, we have separate weights and biases.
self.W = nn.Parameter(0.02 * torch.randn(num_categories, input_dim, hidden_dim))
self.b = nn.Parameter(torch.zeros(num_categories, hidden_dim))
def forward(self, x, cat_ids):
selected_w = self.W[cat_ids]
selected_b = self.b[cat_ids]
return torch.bmm(x, selected_w) + selected_b.unsqueeze(1)
class CategorySpecificMLP(nn.Module):
def __init__(self, num_categories, input_dim, hidden_dim, output_dim):
super().__init__()
self.num_categories = num_categories
self.layer1 = CategorySpecificLinear(num_categories, input_dim, hidden_dim)
self.layer2 = CategorySpecificLinear(num_categories, hidden_dim, output_dim)
def forward(self, x, cat_ids):
hidden = F.relu(self.layer1(x, cat_ids))
return self.layer2(hidden, cat_ids)
class MultiEmbodimentActionEncoder(nn.Module):
def __init__(self, action_dim, hidden_size, num_embodiments):
super().__init__()
self.hidden_size = hidden_size
self.num_embodiments = num_embodiments
# W1: R^{w x d}, W2: R^{w x 2w}, W3: R^{w x w}
self.W1 = CategorySpecificLinear(num_embodiments, action_dim, hidden_size) # (d -> w)
self.W2 = CategorySpecificLinear(num_embodiments, 2 * hidden_size, hidden_size) # (2w -> w)
self.W3 = CategorySpecificLinear(num_embodiments, hidden_size, hidden_size) # (w -> w)
self.pos_encoding = SinusoidalPositionalEncoding(hidden_size)
def forward(self, actions, timesteps, cat_ids):
"""
actions: shape (B, T, action_dim)
timesteps: shape (B,) -- a single scalar per batch item
cat_ids: shape (B,)
returns: shape (B, T, hidden_size)
"""
b, t, _ = actions.shape
# 1) Expand each batch's single scalar time 'tau' across all T steps
# so that shape => (B, T)
# e.g. if timesteps is (B,), replicate across T
if timesteps.dim() == 1 and timesteps.shape[0] == b:
# shape (B,) => (B,T)
timesteps = timesteps.unsqueeze(1).expand(-1, t)
else:
raise ValueError("Expected `timesteps` to have shape (B,) so we can replicate across T.")
# 2) Standard action MLP step for shape => (B, T, w)
a_emb = self.W1(actions, cat_ids)
# 3) Get the sinusoidal encoding (B, T, w)
tau_emb = self.pos_encoding(timesteps).to(dtype=a_emb.dtype)
# 4) Concat along last dim => (B, T, 2w), then W2 => (B, T, w), swish
x = torch.cat([a_emb, tau_emb], dim=-1)
x = swish(self.W2(x, cat_ids))
# 5) Finally W3 => (B, T, w)
x = self.W3(x, cat_ids)
return x
@dataclass
class FlowmatchingActionHeadConfig(PretrainedConfig):
"""NOTE: N1.5 uses XEmbFlowmatchingPolicyHeadConfig as action head"""
add_pos_embed: bool = field(default=True, metadata={"help": "Whether to add positional embedding"})
model_dtype: str = field(default="float32", metadata={"help": "Model data type."})
diffusion_model_cfg: dict = field(default=None, metadata={"help": "Diffusion model configuration."})
input_embedding_dim: int = field(default=1536, metadata={"help": "Input embedding channel dimension."})
backbone_embedding_dim: int = field(
default=1536, metadata={"help": "Backbone embedding channel dimension."}
)
hidden_size: int = field(default=1024, metadata={"help": "Input embedding dimension."})
max_seq_len: int = field(default=1024, metadata={"help": "Maximum Sequence Length"})
action_dim: int = field(default=None, metadata={"help": "Action dimension."})
action_horizon: int = field(default=None, metadata={"help": "Action horizon."})
noise_beta_alpha: float = field(default=1.5, metadata={"help": ""})
noise_beta_beta: float = field(default=1.0, metadata={"help": ""})
noise_s: float = field(default=0.999, metadata={"help": "Flow matching noise Beta distribution s."})
num_timestep_buckets: int = field(
default=1000, metadata={"help": "Number of timestep discretization buckets."}
)
num_inference_timesteps: int = field(
default=None,
metadata={"help": "Number of inference steps for noise diffusion."},
)
max_num_embodiments: int = field(default=32, metadata={"help": "Number of embodiments."})
tune_projector: bool = field(default=True, metadata={"help": "Whether to tune the projector."})
tune_diffusion_model: bool = field(
default=True, metadata={"help": "Whether to tune the diffusion model."}
)
load_pretrained_det_decode_layer_path: str = field(
default=None, metadata={"help": "Path to pretrained detection model."}
)
detection_coeff: float = field(default=1.0, metadata={"help": "Detection coefficient."})
freeze_decode_layer: bool = field(default=False)
expand_batch: int = field(default=None)
use_vlln: bool = field(default=True)
vl_self_attention_cfg: dict = field(default=None)
num_target_vision_tokens: int = field(default=32, metadata={"help": "Number of target vision tokens."})
def __init__(self, **kwargs):
super().__init__(**kwargs)
for key, value in kwargs.items():
setattr(self, key, value)
class FlowmatchingActionHead(nn.Module):
config_class = FlowmatchingActionHeadConfig
supports_gradient_checkpointing = True
def __init__(
self,
config: FlowmatchingActionHeadConfig,
):
super().__init__()
self.hidden_size = config.hidden_size
self.input_embedding_dim = config.input_embedding_dim
self.model = DiT(**config.diffusion_model_cfg)
self.action_dim = config.action_dim
self.action_horizon = config.action_horizon
self.num_inference_timesteps = config.num_inference_timesteps
self.state_encoder = CategorySpecificMLP(
num_categories=config.max_num_embodiments,
input_dim=config.max_state_dim,
hidden_dim=self.hidden_size,
output_dim=self.input_embedding_dim,
)
self.action_encoder = MultiEmbodimentActionEncoder(
action_dim=config.action_dim,
hidden_size=self.input_embedding_dim,
num_embodiments=config.max_num_embodiments,
)
self.action_decoder = CategorySpecificMLP(
num_categories=config.max_num_embodiments,
input_dim=self.hidden_size,
hidden_dim=self.hidden_size,
output_dim=self.action_dim,
)
self.future_tokens = nn.Embedding(config.num_target_vision_tokens, self.input_embedding_dim)
nn.init.normal_(self.future_tokens.weight, mean=0.0, std=0.02)
self.vlln = nn.LayerNorm(config.backbone_embedding_dim) if config.use_vlln else nn.Identity()
self.vl_self_attention = (
SelfAttentionTransformer(**config.vl_self_attention_cfg) if config.use_vlln else nn.Identity()
)
if config.add_pos_embed:
self.position_embedding = nn.Embedding(config.max_seq_len, self.input_embedding_dim)
nn.init.normal_(self.position_embedding.weight, mean=0.0, std=0.02)
self.beta_dist = Beta(config.noise_beta_alpha, config.noise_beta_beta)
self.num_timestep_buckets = config.num_timestep_buckets
self.config = config
self.set_trainable_parameters(config.tune_projector, config.tune_diffusion_model)
def set_trainable_parameters(self, tune_projector: bool, tune_diffusion_model: bool):
self.tune_projector = tune_projector
self.tune_diffusion_model = tune_diffusion_model
for p in self.parameters():
p.requires_grad = True
if not tune_projector:
self.state_encoder.requires_grad_(False)
self.action_encoder.requires_grad_(False)
self.action_decoder.requires_grad_(False)
if self.config.add_pos_embed:
self.position_embedding.requires_grad_(False)
if not tune_diffusion_model:
self.model.requires_grad_(False)
print(f"Tune action head projector: {self.tune_projector}")
print(f"Tune action head diffusion model: {self.tune_diffusion_model}")
# Check if any parameters are still trainable. If not, print a warning.
if not tune_projector and not tune_diffusion_model:
for name, p in self.named_parameters():
if p.requires_grad:
print(f"Action head trainable parameter: {name}")
if not any(p.requires_grad for p in self.parameters()):
print("Warning: No action head trainable parameters found.")
def set_frozen_modules_to_eval_mode(self):
"""
Huggingface will call model.train() at each training_step. To ensure
the expected behaviors for modules like dropout, batchnorm, etc., we
need to call model.eval() for the frozen modules.
"""
if self.training:
if not self.tune_projector:
self.state_encoder.eval()
self.action_encoder.eval()
self.action_decoder.eval()
if self.config.add_pos_embed:
self.position_embedding.eval()
if not self.tune_diffusion_model:
self.model.eval()
def sample_time(self, batch_size, device, dtype):
sample = self.beta_dist.sample([batch_size]).to(device, dtype=dtype)
return (self.config.noise_s - sample) / self.config.noise_s
def prepare_input(self, batch: dict) -> BatchFeature:
return BatchFeature(data=batch)
def process_backbone_output(self, backbone_output: BatchFeature) -> BatchFeature:
backbone_features = backbone_output["backbone_features"]
backbone_features = self.vlln(backbone_features)
backbone_features = self.vl_self_attention(backbone_features)
backbone_output["backbone_features"] = backbone_features
return backbone_output
def forward(self, backbone_output: BatchFeature, action_input: BatchFeature) -> BatchFeature:
# Set frozen modules to eval
self.set_frozen_modules_to_eval_mode()
backbone_output = self.process_backbone_output(backbone_output)
if self.config.expand_batch is not None:
for k, v in backbone_output.items():
ndim = len(v.shape)
factors = [self.config.expand_batch]
while len(factors) < ndim:
factors.append(1)
factors = tuple(factors)
expanded = v.repeat(*factors)
backbone_output[k] = expanded
for k, v in action_input.items():
ndim = len(v.shape)
factors = [self.config.expand_batch]
while len(factors) < ndim:
factors.append(1)
factors = tuple(factors)
expanded = v.repeat(*factors)
action_input[k] = expanded
# Get vision and language embeddings.
vl_embs = backbone_output.backbone_features
device = vl_embs.device
# Get embodiment ID.
embodiment_id = action_input.embodiment_id
# Embed state.
state_features = self.state_encoder(action_input.state, embodiment_id)
# Embed noised action trajectory.
actions = action_input.action
noise = torch.randn(actions.shape, device=actions.device, dtype=actions.dtype)
t = self.sample_time(actions.shape[0], device=actions.device, dtype=actions.dtype)
t = t[:, None, None] # shape (B,1,1) for broadcast
noisy_trajectory = (1 - t) * noise + t * actions
velocity = actions - noise
# Convert (continuous) t -> discrete if needed
t_discretized = (t[:, 0, 0] * self.num_timestep_buckets).long()
action_features = self.action_encoder(noisy_trajectory, t_discretized, embodiment_id)
# Maybe add position embedding.
if self.config.add_pos_embed:
pos_ids = torch.arange(action_features.shape[1], dtype=torch.long, device=device)
pos_embs = self.position_embedding(pos_ids).unsqueeze(0)
action_features = action_features + pos_embs
# Join vision, language, state and action embedding along sequence dimension.
future_tokens = self.future_tokens.weight.unsqueeze(0).expand(vl_embs.shape[0], -1, -1)
sa_embs = torch.cat((state_features, future_tokens, action_features), dim=1)
vl_attn_mask = backbone_output.backbone_attention_mask
model_output = self.model(
hidden_states=sa_embs,
encoder_hidden_states=vl_embs,
encoder_attention_mask=vl_attn_mask,
timestep=t_discretized,
return_all_hidden_states=False, # NOTE (YL): not using flare now
)
pred = self.action_decoder(model_output, embodiment_id)
pred_actions = pred[:, -actions.shape[1] :]
# Slice out only the action portion of pred and target.
action_mask = action_input.action_mask
loss = F.mse_loss(pred_actions, velocity, reduction="none") * action_mask
loss = loss.sum() / action_mask.sum()
output_dict = {
"loss": loss,
}
return BatchFeature(data=output_dict)
@torch.no_grad()
def get_action(self, backbone_output: BatchFeature, action_input: BatchFeature) -> BatchFeature:
backbone_output = self.process_backbone_output(backbone_output)
# Get vision and language embeddings.
vl_embs = backbone_output.backbone_features
embodiment_id = action_input.embodiment_id
# Embed state.
state_features = self.state_encoder(action_input.state, embodiment_id)
# Set initial actions as the sampled noise.
batch_size = vl_embs.shape[0]
device = vl_embs.device
actions = torch.randn(
size=(batch_size, self.config.action_horizon, self.config.action_dim),
dtype=vl_embs.dtype,
device=device,
)
num_steps = self.num_inference_timesteps
dt = 1.0 / num_steps
# Run denoising steps.
for t in range(num_steps):
t_cont = t / float(num_steps) # e.g. goes 0, 1/N, 2/N, ...
t_discretized = int(t_cont * self.num_timestep_buckets)
# Embed noised action trajectory.
timesteps_tensor = torch.full(size=(batch_size,), fill_value=t_discretized, device=device)
action_features = self.action_encoder(actions, timesteps_tensor, embodiment_id)
# Maybe add position embedding.
if self.config.add_pos_embed:
pos_ids = torch.arange(action_features.shape[1], dtype=torch.long, device=device)
pos_embs = self.position_embedding(pos_ids).unsqueeze(0)
action_features = action_features + pos_embs
# Join vision, language, state and action embedding along sequence dimension.
future_tokens = self.future_tokens.weight.unsqueeze(0).expand(vl_embs.shape[0], -1, -1)
sa_embs = torch.cat((state_features, future_tokens, action_features), dim=1)
# Run model forward.
model_output = self.model(
hidden_states=sa_embs,
encoder_hidden_states=vl_embs,
timestep=timesteps_tensor,
)
pred = self.action_decoder(model_output, embodiment_id)
pred_velocity = pred[:, -self.action_horizon :]
# Update actions using euler integration.
actions = actions + dt * pred_velocity
return BatchFeature(data={"action_pred": actions})
@property
def device(self):
return next(iter(self.parameters())).device
@property
def dtype(self):
return next(iter(self.parameters())).dtype

View File

@@ -0,0 +1,201 @@
#!/usr/bin/env python
# Copyright 2024 NVIDIA Corporation and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from lerobot.configs.policies import PreTrainedConfig
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
from lerobot.optim.optimizers import AdamWConfig
from lerobot.optim.schedulers import CosineDecayWithWarmupSchedulerConfig
@PreTrainedConfig.register_subclass("groot")
@dataclass
class GrootConfig(PreTrainedConfig):
"""Configuration for Groot policy wrapper."""
# Basic policy settings
n_obs_steps: int = 1
chunk_size: int = 50
n_action_steps: int = 50
# Dimension settings (must match pretrained GR00T model expectations)
# Maximum state dimension. Shorter states will be zero-padded.
max_state_dim: int = 64
# Maximum action dimension. Shorter actions will be zero-padded.
max_action_dim: int = 32
# Normalization (start with identity, adjust as needed)
normalization_mapping: dict[str, NormalizationMode] = field(
default_factory=lambda: {
"VISUAL": NormalizationMode.IDENTITY,
"STATE": NormalizationMode.MEAN_STD,
"ACTION": NormalizationMode.MEAN_STD,
}
)
# Image preprocessing (adjust to match Groot's expected input)
image_size: tuple[int, int] = (224, 224)
# Groot-specific model parameters (from groot_finetune_script.py)
# Path or HuggingFace model ID for the base Groot model
base_model_path: str = "nvidia/GR00T-N1.5-3B"
# HF repo ID (or local path) that hosts vocab.json and merges.txt for Eagle tokenizer.
tokenizer_assets_repo: str = "lerobot/eagle2hg-processor-groot-n1p5"
# Embodiment tag to use for training (e.g. 'new_embodiment', 'gr1')
embodiment_tag: str = "new_embodiment"
# Fine-tuning control arguments
# Whether to fine-tune the llm backbone
tune_llm: bool = False
# Whether to fine-tune the vision tower
tune_visual: bool = False
# Whether to fine-tune the projector
tune_projector: bool = True
# Whether to fine-tune the diffusion model
tune_diffusion_model: bool = True
# LoRA parameters (from groot_finetune_script.py)
# Rank for the LORA model. If 0, no LORA will be used.
lora_rank: int = 0
# Alpha value for the LORA model
lora_alpha: int = 16
# Dropout rate for the LORA model
lora_dropout: float = 0.1
# Whether to use the full model for LORA
lora_full_model: bool = False
# Training parameters (matching groot_finetune_script.py)
optimizer_lr: float = 1e-4
optimizer_betas: tuple[float, float] = (0.95, 0.999)
optimizer_eps: float = 1e-8
optimizer_weight_decay: float = 1e-5
warmup_ratio: float = 0.05
use_bf16: bool = True
# Dataset parameters
# Video backend to use for training ('decord' or 'torchvision_av')
video_backend: str = "decord"
# Whether to balance dataset weights in mixture datasets
balance_dataset_weights: bool = True
# Whether to sample trajectories weighted by their length
balance_trajectory_weights: bool = True
# Optional dataset paths for delegating training to Isaac-GR00T runner
dataset_paths: list[str] | None = None
output_dir: str = "./tmp/gr00t"
save_steps: int = 1000
max_steps: int = 10000
batch_size: int = 32
dataloader_num_workers: int = 8
report_to: str = "wandb"
resume: bool = False
def __post_init__(self):
super().__post_init__()
if self.n_action_steps > self.chunk_size:
raise ValueError(
f"n_action_steps ({self.n_action_steps}) cannot exceed chunk_size ({self.chunk_size})"
)
# groot_repo_path is now optional since we ported the components
# No validation needed
def validate_features(self) -> None:
"""Validate and set up input/output features for Groot."""
image_features = [key for key, feat in self.input_features.items() if feat.type == FeatureType.VISUAL]
if not image_features:
raise ValueError(
"Groot policy requires at least one visual input feature. "
"No features of type FeatureType.VISUAL found in input_features."
)
if "observation.state" not in self.input_features:
state_feature = PolicyFeature(
type=FeatureType.STATE,
shape=(self.max_state_dim,),
)
self.input_features["observation.state"] = state_feature
else:
state_shape = self.input_features["observation.state"].shape
state_dim = state_shape[0] if state_shape else 0
if state_dim > self.max_state_dim:
raise ValueError(
f"State dimension {state_dim} exceeds max_state_dim {self.max_state_dim}. "
f"Either reduce state dimension or increase max_state_dim in config."
)
if "action" not in self.output_features:
action_feature = PolicyFeature(
type=FeatureType.ACTION,
shape=(self.max_action_dim,),
)
self.output_features["action"] = action_feature
else:
action_shape = self.output_features["action"].shape
action_dim = action_shape[0] if action_shape else 0
if action_dim > self.max_action_dim:
raise ValueError(
f"Action dimension {action_dim} exceeds max_action_dim {self.max_action_dim}. "
f"Either reduce action dimension or increase max_action_dim in config."
)
def get_optimizer_preset(self) -> AdamWConfig:
"""Return optimizer configuration."""
return AdamWConfig(
lr=self.optimizer_lr,
betas=self.optimizer_betas,
eps=self.optimizer_eps,
weight_decay=self.optimizer_weight_decay,
)
def get_scheduler_preset(self) -> CosineDecayWithWarmupSchedulerConfig:
"""Return scheduler configuration."""
return CosineDecayWithWarmupSchedulerConfig(
num_warmup_steps=int(10000 * self.warmup_ratio), # 5% warmup by default
num_decay_steps=10000, # Adjust based on training steps
peak_lr=self.optimizer_lr,
decay_lr=self.optimizer_lr * 0.1,
)
@property
def observation_delta_indices(self) -> None:
"""Return indices for delta observations (None for Groot)."""
return None
@property
def action_delta_indices(self) -> list[int]:
"""Return indices for delta actions."""
return list(range(min(self.chunk_size, 16)))
@property
def reward_delta_indices(self) -> None:
"""Return indices for delta rewards (None for Groot)."""
return None

View File

@@ -0,0 +1,135 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from transformers.configuration_utils import PretrainedConfig
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
from transformers.models.qwen3.configuration_qwen3 import Qwen3Config
from transformers.models.siglip.configuration_siglip import SiglipVisionConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class Eagle25VLConfig(PretrainedConfig):
model_type = "eagle_2_5_vl"
is_composition = True
sub_configs = {"vision_config": SiglipVisionConfig, "text_config": Qwen2Config}
def __init__(
self,
vision_config=None,
text_config=None,
use_backbone_lora=0,
use_llm_lora=0,
pad2square=False,
select_layer=-4,
force_image_size=None,
downsample_ratio=0.5,
template=None,
dynamic_image_size=False,
use_thumbnail=False,
loss_version="v1",
min_dynamic_tiles=1,
max_dynamic_tiles=6,
mlp_checkpoint=False,
initializer_range=0.02,
_attn_implementation="flash_attention_2",
_attn_implementation_autoset=False,
llm_config=None,
image_token_index=None,
use_pixel_shuffle=True,
mlp_connector_layers=2,
**kwargs,
):
super().__init__(**kwargs)
if vision_config is None:
vision_config = {"model_type": "siglip_vision_model"}
logger.info("vision_config is None. Initializing the InternVisionConfig with default values.")
if text_config is None:
text_config = {"architectures": ["Qwen2ForCausalLM"]}
logger.info(
"text_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`)."
)
if vision_config["model_type"] == "siglip_vision_model":
self.vision_config = SiglipVisionConfig(**vision_config)
else:
raise ValueError("Unsupported model_type: {}".format(vision_config["model_type"]))
if text_config["architectures"][0] == "LlamaForCausalLM":
self.text_config = LlamaConfig(**text_config)
elif text_config["architectures"][0] == "Qwen2ForCausalLM":
self.text_config = Qwen2Config(**text_config)
elif text_config["architectures"][0] == "Qwen3ForCausalLM":
self.text_config = Qwen3Config(**text_config)
else:
raise ValueError("Unsupported architecture: {}".format(text_config["architectures"][0]))
self.use_backbone_lora = use_backbone_lora
self.use_llm_lora = use_llm_lora
self.mlp_checkpoint = mlp_checkpoint
self.pad2square = pad2square
self.select_layer = select_layer
self.force_image_size = force_image_size
self.downsample_ratio = downsample_ratio
self.template = template
self.dynamic_image_size = dynamic_image_size
self.use_thumbnail = use_thumbnail
self.loss_version = loss_version
self.initializer_range = initializer_range
self.min_dynamic_tiles = min_dynamic_tiles
self.max_dynamic_tiles = max_dynamic_tiles
self.tie_word_embeddings = self.text_config.tie_word_embeddings
self._attn_implementation = _attn_implementation
self._attn_implementation_autoset = _attn_implementation_autoset
self.image_token_index = image_token_index
self.use_pixel_shuffle = use_pixel_shuffle
self.mlp_connector_layers = mlp_connector_layers
logger.info(f"min_dynamic_tiles: {self.min_dynamic_tiles}")
logger.info(f"max_dynamic_tiles: {self.max_dynamic_tiles}")
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["vision_config"] = self.vision_config.to_dict()
output["text_config"] = self.text_config.to_dict()
output["model_type"] = self.__class__.model_type
output["use_backbone_lora"] = self.use_backbone_lora
output["use_llm_lora"] = self.use_llm_lora
output["pad2square"] = self.pad2square
output["select_layer"] = self.select_layer
output["force_image_size"] = self.force_image_size
output["downsample_ratio"] = self.downsample_ratio
output["template"] = self.template
output["dynamic_image_size"] = self.dynamic_image_size
output["use_thumbnail"] = self.use_thumbnail
output["min_dynamic_tiles"] = self.min_dynamic_tiles
output["max_dynamic_tiles"] = self.max_dynamic_tiles
output["tie_word_embeddings"] = self.tie_word_embeddings
output["_attn_implementation"] = self._attn_implementation
output["_attn_implementation_autoset"] = self._attn_implementation_autoset
output["use_pixel_shuffle"] = self.use_pixel_shuffle
output["mlp_connector_layers"] = self.mlp_connector_layers
return output

View File

@@ -0,0 +1,504 @@
# --------------------------------------------------------
# NVIDIA
# Copyright (c) 2025 NVIDIA
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
# copy from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava_onevision/image_processing_llava_onevision_fast.py
from typing import Optional
from transformers.image_processing_utils import (
BatchFeature,
get_patch_output_size,
)
from transformers.image_processing_utils_fast import (
BaseImageProcessorFast,
DefaultFastImageProcessorKwargs,
group_images_by_shape,
reorder_images,
)
from transformers.image_utils import (
IMAGENET_STANDARD_MEAN, # 0.5, 0.5, 0.5
IMAGENET_STANDARD_STD, # 0.5, 0.5, 0.5
ChannelDimension,
ImageInput,
PILImageResampling,
SizeDict,
get_image_size,
make_flat_list_of_images,
validate_kwargs,
)
from transformers.processing_utils import Unpack
from transformers.utils import (
TensorType,
add_start_docstrings,
is_torch_available,
is_torchvision_v2_available,
)
from transformers.video_utils import VideoInput
if is_torch_available():
import torch
if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F # noqa: N812
from transformers.image_utils import pil_torch_interpolation_mapping
else:
from torchvision.transforms import functional as F # noqa: N812
def crop(img: torch.Tensor, left: int, top: int, right: int, bottom: int) -> torch.Tensor:
"""Crop the given numpy array.
Args:
img (torch.Tensor): Image to be cropped. Format should be (C, H, W).
left (int): The left coordinate of the crop box.
top (int): The top coordinate of the crop box.
right (int): The right coordinate of the crop box.
bottom (int): The bottom coordinate of the crop box.
Returns:
torch.Tensor: Cropped image.
"""
if not isinstance(img, torch.Tensor):
raise TypeError(f"img should be torch.Tensor. Got {type(img)}")
if img.ndim not in [2, 3]:
raise ValueError(f"Image should have 2 or 3 dimensions. Got {img.ndim}")
img_height = img.shape[1]
img_width = img.shape[2]
if top < 0 or left < 0 or bottom > img_height or right > img_width:
raise ValueError("Crop coordinates out of bounds")
if top >= bottom or left >= right:
raise ValueError("Invalid crop coordinates")
return img[:, top:bottom, left:right]
class Eagle25VLFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
max_dynamic_tiles: int | None
min_dynamic_tiles: int | None
use_thumbnail: bool | None
pad_during_tiling: bool | None
do_pad: bool | None
@add_start_docstrings(
"Constructs a fast ConvNeXT image processor. Based on [`SiglipImageProcessor`] with incorporation of processing each video frame.",
# BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, TODO: this was depreciated from transformers remove!
"""
image_grid_pinpoints (`List[List[int]]`, *optional*):
A list of possible resolutions to use for processing high resolution images. The best resolution is selected
based on the original size of the image. Can be overridden by `image_grid_pinpoints` in the `preprocess`
method. Not used for processing videos.
do_pad (`bool`, *optional*):
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
number of patches in the batch. Padding will be applied to the bottom and right with zeros.
""",
)
class Eagle25VLImageProcessorFast(BaseImageProcessorFast):
resample = PILImageResampling.BICUBIC
image_mean = IMAGENET_STANDARD_MEAN
image_std = IMAGENET_STANDARD_STD
size = {"height": 448, "width": 448}
default_to_square = False
crop_size = None
do_resize = True
do_center_crop = None
do_rescale = True
do_normalize = True
do_convert_rgb = True
do_pad = True
max_dynamic_tiles = 12
min_dynamic_tiles = 1
use_thumbnail = True
pad_during_tiling = False
valid_kwargs = Eagle25VLFastImageProcessorKwargs
model_input_names = ["pixel_values_videos"]
def __init__(self, **kwargs: Unpack[Eagle25VLFastImageProcessorKwargs]):
super().__init__(**kwargs)
@add_start_docstrings(
# BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS, TODO: this was depreciated from transformers remove!
"""
max_dynamic_tiles (`int`, *optional*):
The maximum number of dynamic tiles to use for processing high resolution images.
min_dynamic_tiles (`int`, *optional*):
The minimum number of dynamic tiles to use for processing high resolution images.
use_thumbnail (`bool`, *optional*):
Whether to use a thumbnail for processing high resolution images.
pad_during_tiling (`bool`, *optional*):
Whether to pad the image during tiling.
do_pad (`bool`, *optional*):
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
number of patches in the batch. Padding will be applied to the bottom and right with zeros.
""",
)
# NOTE(YL): we will overload the preprocess method to add the image_flags
# def preprocess(
# self, images: ImageInput, **kwargs: Unpack[Eagle25VLFastImageProcessorKwargs]
# ) -> BatchFeature:
# return super().preprocess(images, **kwargs)
def _prepare_images_structure(
self,
images: ImageInput,
expected_ndims: int = 3,
) -> ImageInput:
"""
Prepare the images structure for processing.
Args:
images (`ImageInput`):
The input images to process.
expected_ndims (`int`, *optional*, defaults to 3):
Expected number of dimensions for the images (added for transformers >=4.53.0 compatibility).
Returns:
`ImageInput`: The images with a valid nesting.
"""
return make_flat_list_of_images(images)
def _resize_for_patching(
self,
image: "torch.Tensor",
target_resolution: tuple,
interpolation: "F.InterpolationMode",
input_data_format: ChannelDimension,
) -> "torch.Tensor":
"""
Resizes an image to a target resolution while maintaining aspect ratio.
Args:
image ("torch.Tensor"):
The input image.
target_resolution (tuple):
The target resolution (height, width) of the image.
interpolation (`InterpolationMode`):
Resampling filter to use if resizing the image.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
"torch.Tensor": The resized and padded image.
"""
new_height, new_width = get_patch_output_size(image, target_resolution, input_data_format)
# Resize the image
resized_image = F.resize(image, (new_height, new_width), interpolation=interpolation)
return resized_image
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
"""
previous version mainly focus on ratio.
We also consider area ratio here.
"""
best_factor = float("-inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
# ratio_diff = abs(aspect_ratio - target_aspect_ratio)
# area_ratio = (ratio[0] * ratio[1] * image_size * image_size) / area
"""
new area > 60% of original image area is enough.
"""
factor_based_on_area_n_ratio = min(
(ratio[0] * ratio[1] * image_size * image_size) / area, 0.6
) * min(target_aspect_ratio / aspect_ratio, aspect_ratio / target_aspect_ratio)
if factor_based_on_area_n_ratio > best_factor:
best_factor = factor_based_on_area_n_ratio
best_ratio = ratio
return best_ratio
def _pad_for_patching(
self, image: "torch.Tensor", target_resolution: tuple, input_data_format: ChannelDimension
) -> "torch.Tensor":
"""
Pad an image to a target resolution while maintaining aspect ratio.
"""
target_height, target_width = target_resolution
new_height, new_width = get_patch_output_size(image, target_resolution, input_data_format)
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
padded_image = F.pad(image, padding=[paste_x, paste_y, paste_x, paste_y])
return padded_image
def _get_image_patches(
self,
image: "torch.Tensor",
min_num: int,
max_num: int,
size: tuple,
tile_size: int,
use_thumbnail: bool,
interpolation: "F.InterpolationMode",
pad_during_tiling: bool,
) -> list["torch.Tensor"]:
image_size = get_image_size(image, channel_dim=ChannelDimension.FIRST)
orig_height, orig_width = image_size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
}
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = self.find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, tile_size
)
# calculate the target width and height
target_width = tile_size * target_aspect_ratio[0]
target_height = tile_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
if pad_during_tiling:
resized_image = self._resize_for_patching(
image,
(target_height, target_width),
interpolation=interpolation,
input_data_format=ChannelDimension.FIRST,
)
padded_image = self._pad_for_patching(
resized_image,
(target_height, target_width),
input_data_format=ChannelDimension.FIRST,
)
image_used_to_split = padded_image
else:
image_used_to_split = F.resize(image, (target_height, target_width), interpolation=interpolation)
processed_tiles = []
for i in range(blocks):
box = (
(i % (target_width // tile_size)) * tile_size,
(i // (target_width // tile_size)) * tile_size,
((i % (target_width // tile_size)) + 1) * tile_size,
((i // (target_width // tile_size)) + 1) * tile_size,
)
# split the image
split_img = crop(image_used_to_split, box[0], box[1], box[2], box[3])
processed_tiles.append(split_img)
assert len(processed_tiles) == blocks
if use_thumbnail and len(processed_tiles) != 1:
thumbnail_img = F.resize(image, (tile_size, tile_size), interpolation=interpolation)
processed_tiles.append(thumbnail_img)
return processed_tiles
def _pad_for_batching(
self,
pixel_values: list["torch.Tensor"],
) -> list["torch.Tensor"]:
"""
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
Args:
pixel_values (`List[torch.Tensor]`):
An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
Returns:
List[`torch.Tensor`]: The padded images.
"""
max_patch = max(len(x) for x in pixel_values)
pixel_values = [
torch.nn.functional.pad(image, pad=[0, 0, 0, 0, 0, 0, 0, max_patch - image.shape[0]])
for image in pixel_values
]
return pixel_values
def _preprocess(
self,
images: list["torch.Tensor"],
do_resize: bool,
size: SizeDict,
max_dynamic_tiles: int,
min_dynamic_tiles: int,
use_thumbnail: bool,
pad_during_tiling: bool,
interpolation: Optional["F.InterpolationMode"],
do_center_crop: bool,
crop_size: SizeDict,
do_rescale: bool,
rescale_factor: float,
do_normalize: bool,
image_mean: float | list[float] | None,
image_std: float | list[float] | None,
do_pad: bool,
return_tensors: str | TensorType | None,
pad_size: SizeDict | None = None, # Added for transformers >=4.53.0 compatibility
disable_grouping: bool | None = None, # Added for transformers >=4.53.0 compatibility
) -> BatchFeature:
processed_images = []
image_sizes = []
# Determine the size tuple
if size and size.height and size.width:
size_tuple = (size.height, size.width)
else:
size_tuple = (size.shortest_edge, size.shortest_edge)
# Determine the patch size
if crop_size and crop_size.height:
tile_size = crop_size.height
elif size and size.height:
tile_size = size.height
else:
tile_size = size.shortest_edge
for image in images:
image_patches = self._get_image_patches(
image,
min_num=min_dynamic_tiles,
max_num=max_dynamic_tiles,
size=size_tuple,
tile_size=tile_size,
use_thumbnail=use_thumbnail,
interpolation=interpolation,
pad_during_tiling=pad_during_tiling,
)
# Group images by size for batched processing
processed_image_patches_grouped = {}
# Added for transformers >=4.53.0 compatibility
grouped_image_patches, grouped_image_patches_index = group_images_by_shape(
image_patches,
disable_grouping=disable_grouping,
)
for shape, stacked_image_patches in grouped_image_patches.items():
if do_resize:
stacked_image_patches = self.resize(
image=stacked_image_patches,
size=size,
interpolation=interpolation,
)
if do_center_crop:
stacked_image_patches = self.center_crop(stacked_image_patches, crop_size)
# Fused rescale and normalize
stacked_image_patches = self.rescale_and_normalize(
stacked_image_patches,
do_rescale,
rescale_factor,
do_normalize,
image_mean,
image_std,
)
processed_image_patches_grouped[shape] = stacked_image_patches
processed_image_patches = reorder_images(
processed_image_patches_grouped, grouped_image_patches_index
)
processed_image_patches = (
torch.stack(processed_image_patches, dim=0) if return_tensors else processed_image_patches
)
processed_images.append(processed_image_patches)
image_sizes.append(get_image_size(image, ChannelDimension.FIRST))
if do_pad:
processed_images = self._pad_for_batching(processed_images)
# processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
processed_images = torch.cat(processed_images, dim=0) if return_tensors else processed_images
return BatchFeature(
data={"pixel_values": processed_images, "image_sizes": image_sizes},
tensor_type=return_tensors,
)
def preprocess(
self,
images: ImageInput,
videos: VideoInput = None,
**kwargs: Unpack[Eagle25VLFastImageProcessorKwargs],
) -> BatchFeature:
validate_kwargs(
captured_kwargs=kwargs.keys(),
valid_processor_keys=self.valid_kwargs.__annotations__.keys(),
)
# Set default kwargs from self. This ensures that if a kwarg is not provided
# by the user, it gets its default value from the instance, or is set to None.
for kwarg_name in self.valid_kwargs.__annotations__:
kwargs.setdefault(kwarg_name, getattr(self, kwarg_name, None))
# Extract parameters that are only used for preparing the input images
do_convert_rgb = kwargs.pop("do_convert_rgb")
input_data_format = kwargs.pop("input_data_format")
device = kwargs.pop("device")
# Prepare input images
# transformers >= 4.53.0: uses _prepare_image_like_inputs instead of _prepare_input_images
if images is not None:
images = self._prepare_image_like_inputs(
images=images,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
device=device,
)
if videos is not None:
videos = self._prepare_image_like_inputs(
images=videos,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
device=device,
)
# Update kwargs that need further processing before being validated
kwargs = self._further_process_kwargs(**kwargs)
# Validate kwargs
self._validate_preprocess_kwargs(**kwargs)
# torch resize uses interpolation instead of resample
# Added for transformers >=4.53.0 compatibility
resample = kwargs.pop("resample", self.resample)
kwargs["interpolation"] = (
pil_torch_interpolation_mapping[resample]
if isinstance(resample, PILImageResampling | int)
else resample
)
# Filter kwargs to only include those accepted by _preprocess
valid_preprocess_kwargs = {
"do_resize",
"size",
"max_dynamic_tiles",
"min_dynamic_tiles",
"use_thumbnail",
"pad_during_tiling",
"interpolation",
"do_center_crop",
"crop_size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"do_pad",
"return_tensors",
"pad_size",
"disable_grouping",
}
filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_preprocess_kwargs}
if images is not None:
return self._preprocess(images, **filtered_kwargs)
elif videos is not None:
return self._preprocess(videos, **filtered_kwargs)
__all__ = ["Eagle25VLImageProcessorFast"]

View File

@@ -0,0 +1,395 @@
# --------------------------------------------------------
# NVIDIA
# Copyright (c) 2025 NVIDIA
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import inspect
import torch
import torch.utils.checkpoint as cp
from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import GenerationConfig
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.models.llama.modeling_llama import LlamaForCausalLM
from transformers.models.qwen2.modeling_qwen2 import Qwen2ForCausalLM
from transformers.models.qwen3.modeling_qwen3 import Qwen3ForCausalLM
from transformers.models.siglip.modeling_siglip import SiglipVisionModel
from transformers.utils import add_start_docstrings, logging
from .configuration_eagle2_5_vl import Eagle25VLConfig
logger = logging.get_logger(__name__)
# copy from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava_onevision/modeling_llava_onevision.py#L241C1-L280C1
EAGLE2_5_VL_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Eagle25VLConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Eagle2_5_VL Model outputting raw hidden-states without any specific head on top.",
EAGLE2_5_VL_START_DOCSTRING,
)
class Eagle25VLPreTrainedModel(PreTrainedModel):
config_class = Eagle25VLConfig
base_model_prefix = "model"
main_input_name = "input_ids"
supports_gradient_checkpointing = True
_no_split_modules = [
"Qwen2DecoderLayer",
"LlamaDecoderLayer",
"Siglip2EncoderLayer",
"SiglipEncoderLayer",
]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
_supports_static_cache = True
_supports_quantized_cache = True
_supports_sdpa = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear | nn.Conv2d):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class Eagle25VLForConditionalGeneration(Eagle25VLPreTrainedModel, GenerationMixin):
config_class = Eagle25VLConfig
def __init__(self, config: Eagle25VLConfig, vision_model=None, language_model=None):
super().__init__(config)
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
if config.use_pixel_shuffle:
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio**2))
else:
self.num_image_token = int((image_size // patch_size) ** 2)
self.select_layer = config.select_layer
self.downsample_ratio = config.downsample_ratio
self.loss_version = config.loss_version
self.mlp_checkpoint = config.mlp_checkpoint
self.use_pixel_shuffle = config.use_pixel_shuffle
self.mlp_connector_layers = config.mlp_connector_layers
logger.info(f"num_image_token: {self.num_image_token}")
logger.info(f"mlp_checkpoint: {self.mlp_checkpoint}")
if vision_model is not None:
self.vision_model = vision_model
else:
if config.vision_config.model_type == "siglip_vision_model":
config.vision_config._attn_implementation = "flash_attention_2"
self.vision_model = SiglipVisionModel(config.vision_config)
else:
raise NotImplementedError(f"{config.vision_config.model_type} is not implemented.")
if language_model is not None:
self.language_model = language_model
else:
if config.text_config.architectures[0] == "LlamaForCausalLM":
self.language_model = LlamaForCausalLM(config.text_config)
elif config.text_config.architectures[0] == "Phi3ForCausalLM":
raise NotImplementedError("Phi3 is not implemented.")
# self.language_model = Phi3ForCausalLM(config.text_config)
elif config.text_config.architectures[0] == "Qwen2ForCausalLM":
assert config.text_config._attn_implementation == "flash_attention_2", (
f"Qwen2 must use flash_attention_2 but got {config.text_config._attn_implementation}"
)
self.language_model = Qwen2ForCausalLM(config.text_config)
elif config.text_config.architectures[0] == "Qwen3ForCausalLM":
self.language_model = Qwen3ForCausalLM(config.text_config)
else:
raise NotImplementedError(f"{config.text_config.architectures[0]} is not implemented.")
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.text_config.hidden_size
if config.mlp_connector_layers == 2:
self.mlp1 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size),
)
elif config.mlp_connector_layers == 1 and config.use_pixel_shuffle:
self.mlp1 = nn.Sequential(
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
)
elif config.mlp_connector_layers == 1 and not config.use_pixel_shuffle:
self.mlp1 = nn.Sequential(
nn.Linear(vit_hidden_size, llm_hidden_size),
)
else:
raise NotImplementedError(f"{config.mlp_connector_layers} is not implemented.")
self.image_token_index = config.image_token_index
self.neftune_alpha = None
if config.use_backbone_lora:
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
self.use_llm_lora = config.use_llm_lora
if config.use_llm_lora:
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
self.check_forward_kwargs()
def check_forward_kwargs(self):
# We intentionally avoid using **kwargs in forward because Hugging Face Transformers
# has special handling for functions with **kwargs parameters that would affect
# how our model is processed during training and inference.
forward_params = inspect.signature(self.forward).parameters
assert not any(k.kind == inspect.Parameter.VAR_KEYWORD for k in forward_params.values())
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
lora_config = LoraConfig(
r=r,
target_modules=[
"self_attn.q_proj",
"self_attn.k_proj",
"self_attn.v_proj",
"self_attn.out_proj",
"mlp.fc1",
"mlp.fc2",
],
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
)
self.vision_model = get_peft_model(self.vision_model, lora_config)
self.vision_model.print_trainable_parameters()
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
lora_config = LoraConfig(
r=r,
target_modules=[
"self_attn.q_proj",
"self_attn.k_proj",
"self_attn.v_proj",
"self_attn.o_proj",
"mlp.gate_proj",
"mlp.down_proj",
"mlp.up_proj",
],
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
task_type="CAUSAL_LM",
)
self.language_model = get_peft_model(self.language_model, lora_config)
self.language_model.enable_input_require_grads()
self.language_model.print_trainable_parameters()
self.use_llm_lora = True
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: torch.Tensor | None = None,
position_ids: torch.LongTensor | None = None,
image_flags: torch.LongTensor | None = None,
past_key_values: list[torch.FloatTensor] | None = None,
labels: torch.LongTensor | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
num_tiles_list: list[torch.Tensor] | None = None,
) -> tuple | CausalLMOutputWithPast:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_embeds = self.language_model.get_input_embeddings()(input_ids)
vit_embeds = self.extract_feature(pixel_values)
if image_flags is not None:
image_flags = image_flags.view(-1)
vit_embeds = vit_embeds[image_flags == 1]
b, n, c = input_embeds.shape
input_embeds = input_embeds.reshape(b * n, c)
input_ids = input_ids.reshape(b * n)
selected = input_ids == self.image_token_index
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, c)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, c)
print(
f"warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, "
f"vit_embeds.shape={vit_embeds.shape}"
)
n_token = selected.sum()
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
input_embeds = input_embeds.reshape(b, n, c)
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor)))
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values):
if self.select_layer == -1:
vit_embeds = self.vision_model(
pixel_values=pixel_values, output_hidden_states=False, return_dict=True
)
if hasattr(vit_embeds, "last_hidden_state"):
vit_embeds = vit_embeds.last_hidden_state
else:
vit_embeds = self.vision_model(
pixel_values=pixel_values, output_hidden_states=True, return_dict=True
).hidden_states[self.select_layer]
if self.use_pixel_shuffle:
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(
vit_embeds, scale_factor=self.downsample_ratio
) # torch.Size([B, 1024, 1024]) -> torch.Size([B, 16, 16, 4096])
vit_embeds = vit_embeds.reshape(
vit_embeds.shape[0], -1, vit_embeds.shape[-1]
) # torch.Size([B, 16, 16, 4096]) -> torch.Size([B, 256, 4096])
if self.mlp_checkpoint and vit_embeds.requires_grad:
vit_embeds = cp.checkpoint(self.mlp1, vit_embeds)
else:
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
@torch.no_grad()
def generate(
self,
pixel_values: torch.FloatTensor | None = None,
input_ids: torch.FloatTensor | None = None,
attention_mask: torch.LongTensor | None = None,
visual_features: torch.FloatTensor | None = None,
generation_config: GenerationConfig | None = None,
output_hidden_states: bool | None = None,
image_sizes: list[tuple[int, int]] | None = None,
**generate_kwargs,
) -> torch.LongTensor:
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds = self.extract_feature(pixel_values)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
b, n, c = input_embeds.shape
input_embeds = input_embeds.reshape(b * n, c)
input_ids = input_ids.reshape(b * n)
selected = input_ids == self.config.image_token_index
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(-1, c).to(input_embeds.device)
input_embeds = input_embeds.reshape(b, n, c)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
if "use_cache" not in generate_kwargs:
generate_kwargs["use_cache"] = True
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
**generate_kwargs,
)
return outputs
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_input_embeddings
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_input_embeddings
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_output_embeddings
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_decoder
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_decoder
def get_decoder(self):
return self.language_model.get_decoder()

View File

@@ -0,0 +1,518 @@
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Eagle25VL.
copy from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava_onevision/processing_llava_onevision.py
"""
import base64
import os
import re
from io import BytesIO
import requests
import torch
from PIL import Image
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from transformers.video_utils import VideoInput
logger = logging.get_logger(__name__)
FRAME_FACTOR = 2
FPS = 2.0
FPS_MIN_FRAMES = 4
FPS_MAX_FRAMES = 256
def to_rgb(pil_image: Image.Image) -> Image.Image:
if pil_image.mode == "RGBA":
white_background = Image.new("RGB", pil_image.size, (255, 255, 255))
white_background.paste(pil_image, mask=pil_image.split()[3]) # Use alpha channel as mask
return white_background
else:
return pil_image.convert("RGB")
def fetch_image(ele: dict[str, str | Image.Image]) -> Image.Image:
image = ele["image"] if "image" in ele else ele["image_url"]
image_obj = None
if isinstance(image, Image.Image):
image_obj = image
elif image.startswith("http://") or image.startswith("https://"):
response = requests.get(image, stream=True, timeout=10)
image_obj = Image.open(BytesIO(response.content))
elif image.startswith("file://"):
image_obj = Image.open(image[7:])
elif image.startswith("data:image"):
if "base64," in image:
_, base64_data = image.split("base64,", 1)
data = base64.b64decode(base64_data)
image_obj = Image.open(BytesIO(data))
else:
image_obj = Image.open(image)
if image_obj is None:
raise ValueError(
f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}"
)
image = to_rgb(image_obj)
if "scale_factor" in ele:
scale_factor = ele["scale_factor"]
image = image.resize((image.width * scale_factor, image.height * scale_factor), Image.BILINEAR)
return image
class Eagle25VLProcessorKwargs(ProcessingKwargs, total=False):
# see processing_utils.ProcessingKwargs documentation for usage.
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {},
"videos_kwargs": {"max_dynamic_tiles": 1},
}
class Eagle25VLProcessor(ProcessorMixin):
r"""
Constructs a Eagle25VL processor which wraps a Eagle25VL video processor, Eagle25VL image processor and a Eagle25VL tokenizer into a single processor.
[`Eagle25VLProcessor`] offers all the functionalities of [`Eagle25VLVideoProcessor`], [`Eagle25VLImageProcessor`] and [`Eagle25VLTokenizer`]. See the
[`~Eagle25VLVideoProcessor.__call__`], [`~Eagle25VLProcessor.__call__`] and [`~Eagle25VLProcessor.decode`] for more information.
Args:
image_processor ([`LlavaOnevisionImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
num_image_tokens (`int`, *optional*):
Number of image tokens for one imagethat will be returned by vision tower.
vision_feature_select_strategy (`str`, *optional*):
The feature selection strategy used to select the vision feature from the vision backbone.
Should be same as in model's config
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
image_token (`str`, *optional*, defaults to `"<image>"`):
Special token used to denote image location.
video_token (`str`, *optional*, defaults to `"<video>"`):
Special token used to denote video location.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = [
"chat_template",
"num_image_tokens",
"vision_feature_select_strategy",
"image_token",
"video_token",
"images_kwargs",
"videos_kwargs",
"text_kwargs",
]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
vision_feature_select_strategy=None,
chat_template=None,
image_token="<IMG_CONTEXT>", # nosec: B107
video_token="<IMG_CONTEXT>", # nosec: B107
tokens_per_tile=256,
image_placeholder="image",
video_placeholder="video",
image_start_token="<img>",
image_end_token="</img>",
**kwargs,
):
self.vision_feature_select_strategy = vision_feature_select_strategy
self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
self.video_token = tokenizer.video_token if hasattr(tokenizer, "video_token") else video_token
self.image_token_id = (
tokenizer.image_token_id
if getattr(tokenizer, "image_token_id", None)
else tokenizer.convert_tokens_to_ids(self.image_token)
)
self.video_token_id = (
tokenizer.video_token_id
if getattr(tokenizer, "video_token_id", None)
else tokenizer.convert_tokens_to_ids(self.video_token)
)
self.image_placeholder = image_placeholder
self.video_placeholder = video_placeholder
self.tokens_per_tile = tokens_per_tile
self.image_start_token = image_start_token
self.image_end_token = image_end_token
if "auto_map" in kwargs:
self.auto_map = kwargs["auto_map"]
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def replace_media_placeholder(
self, text, image_list, video_list, timestamps_list, fps_list, **output_kwargs
):
num_of_images_in_this_sample = 0
num_of_videos_in_this_sample = 0
# Regular expression pattern to match formats like <image-1> or <video-2>
pattern = re.compile(rf"<({self.image_placeholder}|{self.video_placeholder})-(\d+)>")
unified_frame_list = []
# image_min_dynamic_tiles = output_kwargs["images_kwargs"].get(
# "min_dynamic_tiles", self.image_processor.min_dynamic_tiles
# )
# image_max_dynamic_tiles = output_kwargs["images_kwargs"].get(
# "max_dynamic_tiles", self.image_processor.max_dynamic_tiles
# )
# image_use_thumbnail = output_kwargs["images_kwargs"].get(
# "use_thumbnail", self.image_processor.use_thumbnail
# )
video_min_dynamic_tiles = output_kwargs["videos_kwargs"].get(
"min_dynamic_tiles", self.image_processor.min_dynamic_tiles
)
video_max_dynamic_tiles = output_kwargs["videos_kwargs"].get(
"max_dynamic_tiles", self.image_processor.max_dynamic_tiles
)
video_use_thumbnail = output_kwargs["videos_kwargs"].get(
"use_thumbnail", self.image_processor.use_thumbnail
)
tile_size = self.image_processor.size.get("height", 448)
# Function to replace tags in a single text
def replace_in_text(text):
# repl callback function for each match replacement operation
def repl(match):
nonlocal unified_frame_list
nonlocal num_of_images_in_this_sample
nonlocal num_of_videos_in_this_sample
media_type = match.group(1) # 'image' or 'video'
idx_in_list = int(match.group(2)) - 1 # Convert to list index (0-based)
# Select the corresponding path based on media type
idx_mapper = {
0: "first",
1: "second",
2: "third",
3: "fourth",
4: "fifth",
5: "sixth",
6: "seventh",
7: "eighth",
8: "ninth",
9: "tenth",
}
if media_type == "image":
image_inputs = self.image_processor(
images=[image_list[idx_in_list]],
videos=None,
**output_kwargs["images_kwargs"],
)
num_all_tiles = image_inputs["pixel_values"].shape[0]
special_placeholder = f"<image {idx_in_list + 1}>{self.image_start_token}{self.image_token * num_all_tiles * self.tokens_per_tile}{self.image_end_token}"
unified_frame_list.append(image_inputs)
num_of_images_in_this_sample += 1
elif media_type == "video":
video_inputs = self.image_processor(
images=None,
videos=[video_list[idx_in_list]],
**output_kwargs["videos_kwargs"],
)
num_all_tiles = video_inputs["pixel_values"].shape[0]
image_sizes = video_inputs["image_sizes"]
if timestamps_list is not None and -1 not in timestamps_list:
frame_timestamps = timestamps_list[idx_in_list]
else:
frame_timestamps = None
sampled_fps = fps_list[idx_in_list] if fps_list is not None else None
num_of_tiles_each_frame = [
self.get_number_tiles_based_on_image_size(
image_size,
video_min_dynamic_tiles,
video_max_dynamic_tiles,
video_use_thumbnail,
tile_size,
)
for image_size in image_sizes
]
assert sum(num_of_tiles_each_frame) == num_all_tiles, (
f"The number of tiles in each frame is not equal to the total number of tiles: {sum(num_of_tiles_each_frame)} != {num_all_tiles}"
)
if frame_timestamps is not None:
assert len(frame_timestamps) == len(num_of_tiles_each_frame), (
f"The number of timestamps is not equal to the number of frames: {len(frame_timestamps)} != {len(num_of_tiles_each_frame)}"
)
special_placeholder = [
f"Frame {i + 1} sample at {frame_timestamps[i]:.2f}s: {self.image_start_token}{self.image_token * num_of_tiles * self.tokens_per_tile}{self.image_end_token}"
for i, num_of_tiles in enumerate(num_of_tiles_each_frame)
]
else:
special_placeholder = [
f"Frame {i + 1}: {self.image_start_token}{self.image_token * num_of_tiles * self.tokens_per_tile}{self.image_end_token}"
for i, num_of_tiles in enumerate(num_of_tiles_each_frame)
]
if sampled_fps is not None:
special_placeholder = (
f"The {idx_mapper[idx_in_list]} video sampled with {sampled_fps:.2f} fps: "
+ "".join(special_placeholder)
)
else:
special_placeholder = f"The {idx_mapper[idx_in_list]} video: " + "".join(
special_placeholder
)
unified_frame_list.append(video_inputs)
num_of_videos_in_this_sample += 1
else:
raise ValueError(f"Unknown media type: {media_type}")
return special_placeholder
return pattern.sub(repl, text)
text = replace_in_text(text)
if len(unified_frame_list) > 0:
pixel_values = torch.cat([frame["pixel_values"] for frame in unified_frame_list])
image_sizes = torch.cat([frame["image_sizes"] for frame in unified_frame_list])
else:
pixel_values = None
image_sizes = None
return (
text,
pixel_values,
image_sizes,
num_of_images_in_this_sample,
num_of_videos_in_this_sample,
)
def __call__(
self,
images: ImageInput = None,
text: TextInput | PreTokenizedInput | list[TextInput] | list[PreTokenizedInput] = None,
audio=None,
videos: VideoInput = None,
**kwargs: Unpack[Eagle25VLProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of a video input to be fed to a model. Returned when `videos` is not `None`.
- **image_sizes** -- Size of each image that will be used to unpad an image. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
Eagle25VLProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, str):
text_list = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
elif isinstance(text, list) and isinstance(text[0], str):
text_list = text
if images is None:
images = []
if videos is None:
videos = []
pixel_values_list = []
image_sizes_list = []
new_sample_list = []
image_start_idx = 0
video_start_idx = 0
timestamps_batch = output_kwargs["videos_kwargs"].pop("timestamps", None)
fps_batch = output_kwargs["videos_kwargs"].pop("fps", None)
for sample in text_list:
timestamps_list = timestamps_batch[video_start_idx:] if timestamps_batch is not None else None
fps_list = fps_batch[video_start_idx:] if fps_batch is not None else None
(
sample,
pixel_values,
image_sizes,
num_of_images_in_this_sample,
num_of_videos_in_this_sample,
) = self.replace_media_placeholder(
sample,
images[image_start_idx:],
videos[video_start_idx:],
timestamps_list,
fps_list,
**output_kwargs,
)
new_sample_list.append(sample)
if pixel_values is not None:
pixel_values_list.append(pixel_values)
image_sizes_list.append(image_sizes)
image_start_idx += num_of_images_in_this_sample
video_start_idx += num_of_videos_in_this_sample
if len(pixel_values_list) > 0:
image_inputs = {
"pixel_values": torch.cat(pixel_values_list),
"image_sizes": torch.cat(image_sizes_list),
}
else:
image_inputs = {}
video_inputs = {}
text_inputs = self.tokenizer(new_sample_list, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs, **video_inputs})
def get_number_tiles_based_on_image_size(
self, image_size: tuple, min_num: int, max_num: int, use_thumbnail: bool, tile_size: int
) -> int:
"""
Get the number of tiles based on the image size.
"""
orig_height, orig_width = image_size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
}
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = self.image_processor.find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, tile_size
)
tiles_num = target_aspect_ratio[0] * target_aspect_ratio[1]
if use_thumbnail and tiles_num > 1:
tiles_num += 1
return tiles_num
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
# override to save video-config in a separate config file
def save_pretrained(self, save_directory, **kwargs):
if os.path.isfile(save_directory):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
outputs = super().save_pretrained(save_directory, **kwargs)
return outputs
# override to load video-config from a separate config file
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
processor = super().from_pretrained(pretrained_model_name_or_path, **kwargs)
# if return_unused_kwargs a tuple is returned where the second element is 'unused_kwargs'
if isinstance(processor, tuple):
processor = processor[0]
return processor
# Copy from https://github.com/QwenLM/Qwen2.5-VL/blob/main/qwen-vl-utils/src/qwen_vl_utils/vision_process.py
def process_vision_info(
self,
conversations: list[dict] | list[list[dict]],
return_video_kwargs: bool = False,
) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] | None, dict | None]:
vision_infos = self.extract_vision_info(conversations)
## Read images or videos
image_inputs = []
video_inputs = []
video_sample_fps_list = []
video_timestamps_list = []
for vision_info in vision_infos:
if "image" in vision_info or "image_url" in vision_info:
image_inputs.append(fetch_image(vision_info))
else:
raise ValueError("image, image_url or video should in content.")
if len(image_inputs) == 0:
image_inputs = None
if len(video_inputs) == 0:
video_inputs = None
if return_video_kwargs:
return (
image_inputs,
video_inputs,
{"fps": video_sample_fps_list, "timestamps": video_timestamps_list},
)
return image_inputs, video_inputs
def extract_vision_info(self, conversations: list[dict] | list[list[dict]]) -> list[dict]:
vision_infos = []
if isinstance(conversations[0], dict):
conversations = [conversations]
for conversation in conversations:
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if (
"image" in ele
or "image_url" in ele
or "video" in ele
or ele["type"] in ("image", "image_url", "video")
):
vision_infos.append(ele)
return vision_infos
__all__ = ["Eagle25VLProcessor"]

View File

@@ -0,0 +1,376 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from pathlib import Path
from typing import TYPE_CHECKING
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import snapshot_download
from huggingface_hub.errors import HFValidationError, RepositoryNotFoundError
from lerobot.utils.import_utils import _transformers_available
# Conditional import for type checking and lazy loading
if TYPE_CHECKING or _transformers_available:
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel
from transformers.feature_extraction_utils import BatchFeature
else:
AutoConfig = None
AutoModel = None
PretrainedConfig = object
PreTrainedModel = object
BatchFeature = None
try:
import tree
except ImportError:
tree = None
from lerobot.policies.groot.action_head.flow_matching_action_head import (
FlowmatchingActionHead,
FlowmatchingActionHeadConfig,
)
from lerobot.policies.groot.utils import ensure_eagle_cache_ready
from lerobot.utils.constants import HF_LEROBOT_HOME
DEFAULT_VENDOR_EAGLE_PATH = str((Path(__file__).resolve().parent / "eagle2_hg_model").resolve())
DEFAULT_TOKENIZER_ASSETS_REPO = "lerobot/eagle2hg-processor-groot-n1p5"
class EagleBackbone(nn.Module):
def __init__(
self,
tune_llm: bool = False,
tune_visual: bool = False,
select_layer: int = -1,
reproject_vision: bool = False,
use_flash_attention: bool = False,
load_bf16: bool = False,
eagle_path: str = DEFAULT_VENDOR_EAGLE_PATH,
tokenizer_assets_repo: str = DEFAULT_TOKENIZER_ASSETS_REPO,
project_to_dim: int = 1536,
):
"""
Args:
tune_llm: whether to tune the LLM model (default: True)
tune_visual: whether to tune the visual model (default: False)
"""
super().__init__()
assert not reproject_vision, "Reproject vision is not implemented here, set to False"
# Prefer loading Eagle model config from the cache directory where vendor files were copied.
vendor_dir = DEFAULT_VENDOR_EAGLE_PATH
cache_dir = HF_LEROBOT_HOME / tokenizer_assets_repo
try:
ensure_eagle_cache_ready(vendor_dir, cache_dir, tokenizer_assets_repo)
except Exception as exc: # nosec: B110
print(f"[GROOT] Warning: failed to prepare Eagle cache for backbone: {exc}")
config = AutoConfig.from_pretrained(str(cache_dir), trust_remote_code=True)
self.eagle_model = AutoModel.from_config(config, trust_remote_code=True)
if project_to_dim is not None:
self.eagle_linear = torch.nn.Linear(2048, project_to_dim)
else:
self.eagle_linear = torch.nn.Identity()
# needed since we don't use these layers. Also saves compute
while len(self.eagle_model.language_model.model.layers) > select_layer:
self.eagle_model.language_model.model.layers.pop(-1)
self.select_layer = select_layer
self.set_trainable_parameters(tune_llm, tune_visual)
def set_trainable_parameters(self, tune_llm: bool, tune_visual: bool):
self.tune_llm = tune_llm
self.tune_visual = tune_visual
for p in self.parameters():
p.requires_grad = True
if not tune_llm:
self.eagle_model.language_model.requires_grad_(False)
if not tune_visual:
self.eagle_model.vision_model.requires_grad_(False)
self.eagle_model.mlp1.requires_grad_(False)
print(f"Tune backbone llm: {self.tune_llm}")
print(f"Tune backbone visual: {self.tune_visual}")
# Check if any parameters are still trainable. If not, print a warning.
if not tune_llm and not tune_visual:
for name, p in self.named_parameters():
if p.requires_grad:
print(f"Backbone trainable parameter: {name}")
if not any(p.requires_grad for p in self.parameters()):
print("Warning: No backbone trainable parameters found.")
def set_frozen_modules_to_eval_mode(self):
"""
Huggingface will call model.train() at each training_step. To ensure
the expected behaviors for modules like dropout, batchnorm, etc., we
need to call model.eval() for the frozen modules.
"""
if self.training:
if self.eagle_model.language_model and not self.tune_llm:
self.eagle_model.language_model.eval()
if self.eagle_model.vision_model and not self.tune_visual:
self.eagle_model.vision_model.eval()
def prepare_input(self, batch: dict) -> BatchFeature:
return BatchFeature(data=batch)
def forward_eagle(self, vl_input: BatchFeature) -> BatchFeature:
eagle_prefix = "eagle_"
eagle_input = {
k.removeprefix(eagle_prefix): v for k, v in vl_input.items() if k.startswith(eagle_prefix)
}
del eagle_input["image_sizes"]
eagle_output = self.eagle_model(**eagle_input, output_hidden_states=True, return_dict=True)
eagle_features = eagle_output.hidden_states[self.select_layer]
eagle_features = self.eagle_linear(eagle_features)
return eagle_features, eagle_input["attention_mask"]
def forward(self, vl_input: BatchFeature) -> BatchFeature:
self.set_frozen_modules_to_eval_mode()
eagle_embeds, eagle_mask = self.forward_eagle(vl_input)
# YL (TODO HACK): to resolve DDP issue when tune_visual=True
# Ensure all trainable parameters in vision_model are used in the forward pass for DDP compatibility
if self.training and self.tune_visual:
dummy_term = torch.tensor(
0.0, device=eagle_embeds.device, dtype=eagle_embeds.dtype, requires_grad=True
)
for param in self.eagle_model.vision_model.parameters():
if param.requires_grad:
dummy_term = dummy_term + 0.0 * param.sum()
eagle_embeds = eagle_embeds + dummy_term
return BatchFeature(
data={"backbone_features": eagle_embeds, "backbone_attention_mask": eagle_mask}
) # [B, T2, hidden_size]
BACKBONE_FEATURE_KEY = "backbone_features"
ACTION_KEY = "action_pred"
LOSS_KEY = "loss"
ERROR_MSG = "Error: unexpected input/output"
N_COLOR_CHANNELS = 3
# config
@dataclass
class GR00TN15Config(PretrainedConfig):
model_type = "gr00t_n1_5"
backbone_cfg: dict = field(init=False, metadata={"help": "Backbone configuration."})
action_head_cfg: dict = field(init=False, metadata={"help": "Action head configuration."})
action_horizon: int = field(init=False, metadata={"help": "Action horizon."})
action_dim: int = field(init=False, metadata={"help": "Action dimension."})
compute_dtype: str = field(default="float32", metadata={"help": "Compute dtype."})
def __init__(self, **kwargs):
super().__init__(**kwargs)
for key, value in kwargs.items():
setattr(self, key, value)
# real model
class GR00TN15(PreTrainedModel):
supports_gradient_checkpointing = True
config_class = GR00TN15Config
"""
we expect the backbone output to have a key 'backbone_features' with shape (batch_size, n, hidden_size)
here n is variable and can be e.g. time, 1 or user specified
we expect the action head output to have a key 'action_pred' with shape (batch_size, time, action_dim) during inference time
we expect these to have type BatchFeature, and they can of course have many other user specified keys too
"""
def __init__(
self,
config: GR00TN15Config,
local_model_path: str,
):
assert isinstance(config.backbone_cfg, dict)
assert isinstance(config.action_head_cfg, dict)
super().__init__(config)
self.local_model_path = local_model_path
self.backbone = EagleBackbone(**config.backbone_cfg)
action_head_cfg = FlowmatchingActionHeadConfig(**config.action_head_cfg)
self.action_head = FlowmatchingActionHead(action_head_cfg)
self.action_horizon = config.action_horizon
self.action_dim = config.action_dim
self.compute_dtype = config.compute_dtype
def validate_inputs(self, inputs):
# NOTE -- this should be handled internally by the model
# however, doing that will likely be breaking changes -- so we'll need to do it after the deadline
detected_error = False
error_msg = ERROR_MSG
if "action" in inputs:
action = inputs["action"]
# In inference, action may be omitted or None; validate only when it's a tensor.
if action is None:
pass # allow None during inference
elif isinstance(action, torch.Tensor):
shape_ok = (
len(action.shape) == 3
and action.shape[1] == self.action_horizon
and action.shape[2] == self.action_dim
)
if not shape_ok:
error_msg += f"\n{action.shape=}"
detected_error = True
else:
# Unexpected non-tensor type provided for action
error_msg += f"\nInvalid type for action: {type(action)}"
detected_error = True
if "video" in inputs:
video = inputs["video"]
type_ok = isinstance(video, np.ndarray)
dtype_ok = video.dtype == np.uint8
shape_ok = len(video.shape) == 6 and video.shape[3] == N_COLOR_CHANNELS
if not type_ok:
error_msg += f"\n{type(video)=}"
detected_error = True
if not dtype_ok:
error_msg += f"\n{video.dtype=}"
detected_error = True
if not shape_ok:
error_msg += f"\n{video.shape=}"
detected_error = True
if detected_error:
raise ValueError(error_msg)
def validate_data(self, action_head_outputs, backbone_outputs, is_training):
fail_backbone = (
not isinstance(backbone_outputs, BatchFeature) or BACKBONE_FEATURE_KEY not in backbone_outputs
)
if fail_backbone:
error_msg = ERROR_MSG
error_msg += f"\n{isinstance(backbone_outputs, BatchFeature)=}"
error_msg += f"\n{BACKBONE_FEATURE_KEY in backbone_outputs=}"
error_msg += f"\n{backbone_outputs[BACKBONE_FEATURE_KEY].shape=}"
raise ValueError(error_msg)
fail_action_head = (not isinstance(action_head_outputs, BatchFeature)) or not (
(
LOSS_KEY in action_head_outputs and is_training
) # there might not be an action prediction during training
or (
ACTION_KEY in action_head_outputs
and action_head_outputs[ACTION_KEY].shape[1] == self.action_horizon
and action_head_outputs[ACTION_KEY].shape[2] == self.action_dim
)
)
if fail_action_head:
error_msg = ERROR_MSG
error_msg += f"\n{isinstance(action_head_outputs, BatchFeature)=}"
error_msg += f"\n{LOSS_KEY in action_head_outputs=}"
error_msg += f"\n{action_head_outputs[ACTION_KEY].shape=}"
error_msg += f"\n{self.action_horizon=}"
error_msg += f"\n{self.action_dim=}"
raise ValueError(error_msg)
def forward(
self,
inputs: dict,
) -> BatchFeature:
backbone_inputs, action_inputs = self.prepare_input(inputs)
backbone_outputs = self.backbone(backbone_inputs)
action_head_outputs = self.action_head(backbone_outputs, action_inputs)
self.validate_data(action_head_outputs, backbone_outputs, is_training=True)
return action_head_outputs
def get_action(
self,
inputs: dict,
) -> BatchFeature:
backbone_inputs, action_inputs = self.prepare_input(inputs)
# Because the behavior of backbones remains the same for training and inference, we can use `forward` for backbones.
backbone_outputs = self.backbone(backbone_inputs)
action_head_outputs = self.action_head.get_action(backbone_outputs, action_inputs)
self.validate_data(action_head_outputs, backbone_outputs, is_training=False)
return action_head_outputs
def prepare_input(self, inputs) -> tuple[BatchFeature, BatchFeature]:
self.validate_inputs(inputs)
backbone_inputs = self.backbone.prepare_input(inputs)
action_inputs = self.action_head.prepare_input(inputs)
def to_device_with_maybe_dtype(x):
# Cast floating tensors to a memory-efficient compute dtype when requested.
# Rationale: Upcasting backbone activations to fp32 significantly increases VRAM.
# When compute_dtype is bfloat16, prefer bf16 for activations to match AMP behavior.
if not isinstance(x, torch.Tensor):
return x
if torch.is_floating_point(x):
if getattr(self, "compute_dtype", None) == "bfloat16":
return x.to(self.device, dtype=torch.bfloat16)
# Fallback: preserve previous behavior if not using bf16 compute
return x.to(self.device, dtype=self.action_head.dtype)
# Non-floating tensors: move device only
return x.to(self.device)
backbone_inputs = tree.map_structure(to_device_with_maybe_dtype, backbone_inputs)
action_inputs = tree.map_structure(to_device_with_maybe_dtype, action_inputs)
return backbone_inputs, action_inputs
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
tune_visual = kwargs.pop("tune_visual", True)
tune_llm = kwargs.pop("tune_llm", False)
tune_projector = kwargs.pop("tune_projector", True)
tune_diffusion_model = kwargs.pop("tune_diffusion_model", True)
print(f"Loading pretrained dual brain from {pretrained_model_name_or_path}")
print(f"Tune backbone vision tower: {tune_visual}")
print(f"Tune backbone LLM: {tune_llm}")
print(f"Tune action head projector: {tune_projector}")
print(f"Tune action head DiT: {tune_diffusion_model}")
# get the current model path being downloaded
try:
# NOTE(YL) This downloads the model to the local cache and returns the local path to the model
# saved in ~/.cache/huggingface/hub/
local_model_path = snapshot_download(pretrained_model_name_or_path, repo_type="model")
# HFValidationError, RepositoryNotFoundError
except (HFValidationError, RepositoryNotFoundError):
print(
f"Model not found or avail in the huggingface hub. Loading from local path: {pretrained_model_name_or_path}"
)
local_model_path = pretrained_model_name_or_path
pretrained_model = super().from_pretrained(
local_model_path, local_model_path=local_model_path, **kwargs
)
pretrained_model.backbone.set_trainable_parameters(tune_visual=tune_visual, tune_llm=tune_llm)
pretrained_model.action_head.set_trainable_parameters(
tune_projector=tune_projector, tune_diffusion_model=tune_diffusion_model
)
return pretrained_model

View File

@@ -0,0 +1,198 @@
#!/usr/bin/env python
# Copyright 2024 NVIDIA Corporation and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Groot Policy Wrapper for LeRobot Integration
Minimal integration that delegates to Isaac-GR00T components where possible
without porting their code. The intent is to:
- Download and load the pretrained GR00T model via GR00TN15.from_pretrained
- Optionally align action horizon similar to gr00t_finetune.py
- Expose predict_action via GR00T model.get_action
- Provide a training forward that can call the GR00T model forward if batch
structure matches.
Notes:
- Dataset loading and full training orchestration is handled by Isaac-GR00T
TrainRunner in their codebase. If you want to invoke that flow end-to-end
from LeRobot, see `GrootPolicy.finetune_with_groot_runner` below.
"""
import os
from collections import deque
import torch
from torch import Tensor
from lerobot.policies.groot.configuration_groot import GrootConfig
from lerobot.policies.groot.groot_n1 import GR00TN15
from lerobot.policies.pretrained import PreTrainedPolicy
class GrootPolicy(PreTrainedPolicy):
"""Wrapper around external Groot model for LeRobot integration."""
name = "groot"
config_class = GrootConfig
def __init__(self, config: GrootConfig):
"""Initialize Groot policy wrapper."""
super().__init__(config)
config.validate_features()
self.config = config
# Initialize GR00T model using ported components
self._groot_model = self._create_groot_model()
self.reset()
def _create_groot_model(self):
"""Create and initialize the GR00T model using Isaac-GR00T API.
This is only called when creating a NEW policy (not when loading from checkpoint).
Steps (delegating to Isaac-GR00T):
1) Download and load pretrained model via GR00TN15.from_pretrained
2) Align action horizon with data_config if provided
"""
# Handle Flash Attention compatibility issues
self._handle_flash_attention_compatibility()
model = GR00TN15.from_pretrained(
pretrained_model_name_or_path=self.config.base_model_path,
tune_llm=self.config.tune_llm,
tune_visual=self.config.tune_visual,
tune_projector=self.config.tune_projector,
tune_diffusion_model=self.config.tune_diffusion_model,
)
model.compute_dtype = "bfloat16" if self.config.use_bf16 else model.compute_dtype
model.config.compute_dtype = model.compute_dtype
return model
def reset(self):
"""Reset policy state when environment resets."""
self._action_queue = deque([], maxlen=self.config.n_action_steps)
def get_optim_params(self) -> dict:
return self.parameters()
def forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, dict]:
"""Training forward pass.
Delegates to Isaac-GR00T model.forward when inputs are compatible.
"""
# Build a clean input dict for GR00T: keep only tensors GR00T consumes
allowed_base = {"state", "state_mask", "action", "action_mask", "embodiment_id"}
groot_inputs = {
k: v
for k, v in batch.items()
if (k in allowed_base or k.startswith("eagle_")) and not (k.startswith("next.") or k == "info")
}
# Get device from model parameters
device = next(self.parameters()).device
# Run GR00T forward under bf16 autocast when enabled to reduce activation memory
# Rationale: Matches original GR00T finetuning (bf16 compute, fp32 params) and avoids fp32 upcasts.
with torch.autocast(device_type=device.type, dtype=torch.bfloat16, enabled=self.config.use_bf16):
outputs = self._groot_model.forward(groot_inputs)
# Isaac-GR00T returns a BatchFeature; loss key is typically 'loss'
loss = outputs.get("loss")
loss_dict = {"loss": loss.item()}
return loss, loss_dict
@torch.no_grad()
def predict_action_chunk(self, batch: dict[str, Tensor]) -> Tensor:
"""Predict a chunk of actions for inference by delegating to Isaac-GR00T.
Returns a tensor of shape (B, n_action_steps, action_dim).
"""
self.eval()
# Build a clean input dict for GR00T: keep only tensors GR00T consumes
# Preprocessing is handled by the processor pipeline, so we just filter the batch
# NOTE: During inference, we should NOT pass action/action_mask (that's what we're predicting)
allowed_base = {"state", "state_mask", "embodiment_id"}
groot_inputs = {
k: v
for k, v in batch.items()
if (k in allowed_base or k.startswith("eagle_")) and not (k.startswith("next.") or k == "info")
}
# Get device from model parameters
device = next(self.parameters()).device
# Use bf16 autocast for inference to keep memory low and match backbone dtype
with torch.autocast(device_type=device.type, dtype=torch.bfloat16, enabled=self.config.use_bf16):
outputs = self._groot_model.get_action(groot_inputs)
actions = outputs.get("action_pred")
original_action_dim = self.config.output_features["action"].shape[0]
actions = actions[:, :, :original_action_dim]
return actions
@torch.no_grad()
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select single action from action queue."""
self.eval()
if len(self._action_queue) == 0:
actions = self.predict_action_chunk(batch)
self._action_queue.extend(actions.transpose(0, 1))
return self._action_queue.popleft()
# -------------------------
# Internal helpers
# -------------------------
def _handle_flash_attention_compatibility(self) -> None:
"""Handle Flash Attention compatibility issues by setting environment variables.
This addresses the common 'undefined symbol' error that occurs when Flash Attention
is compiled against a different PyTorch version than what's currently installed.
"""
# Set environment variables to handle Flash Attention compatibility
# These help with symbol resolution issues
os.environ.setdefault("FLASH_ATTENTION_FORCE_BUILD", "0")
os.environ.setdefault("FLASH_ATTENTION_SKIP_CUDA_BUILD", "0")
# Try to import flash_attn and handle failures gracefully
try:
import flash_attn
print(f"[GROOT] Flash Attention version: {flash_attn.__version__}")
except ImportError as e:
print(f"[GROOT] Flash Attention not available: {e}")
print("[GROOT] Will use fallback attention mechanism")
except Exception as e:
if "undefined symbol" in str(e):
print(f"[GROOT] Flash Attention compatibility issue detected: {e}")
print("[GROOT] This is likely due to PyTorch/Flash Attention version mismatch")
print("[GROOT] Consider reinstalling Flash Attention with compatible version:")
print(" pip uninstall flash-attn")
print(" pip install --no-build-isolation flash-attn==2.6.3")
print("[GROOT] Continuing with fallback attention mechanism")
else:
print(f"[GROOT] Flash Attention error: {e}")
print("[GROOT] Continuing with fallback attention mechanism")

View File

@@ -0,0 +1,664 @@
#!/usr/bin/env python
# Copyright 2024 NVIDIA Corporation and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any
import numpy as np
import torch
from einops import rearrange
from PIL import Image
from lerobot.utils.import_utils import _transformers_available
if TYPE_CHECKING or _transformers_available:
from transformers import AutoProcessor, ProcessorMixin
else:
AutoProcessor = None
ProcessorMixin = object
from lerobot.configs.types import (
FeatureType,
NormalizationMode,
PolicyFeature,
)
from lerobot.policies.groot.configuration_groot import GrootConfig
from lerobot.processor import (
AddBatchDimensionProcessorStep,
DeviceProcessorStep,
PolicyAction,
PolicyProcessorPipeline,
ProcessorStep,
ProcessorStepRegistry,
RenameObservationsProcessorStep,
)
from lerobot.processor.converters import (
policy_action_to_transition,
transition_to_policy_action,
)
from lerobot.processor.core import EnvTransition, TransitionKey
from lerobot.utils.constants import (
HF_LEROBOT_HOME,
POLICY_POSTPROCESSOR_DEFAULT_NAME,
POLICY_PREPROCESSOR_DEFAULT_NAME,
)
# Defaults for Eagle processor locations
DEFAULT_TOKENIZER_ASSETS_REPO = "lerobot/eagle2hg-processor-groot-n1p5"
def make_groot_pre_post_processors(
config: GrootConfig, dataset_stats: dict[str, dict[str, torch.Tensor]] | None = None
) -> tuple[
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""Create preprocessor and postprocessor for Groot policy.
This creates a processing pipeline that transforms LeRobot data format into
the format expected by Isaac-GR00T models:
Preprocessing steps:
1. Optional key renaming (dataset-specific key mapping)
2. Add batch dimension to unbatched data
3. Pack video/state/action/language/embodiment and apply optional min-max normalization before padding
4. Encode video+language with Eagle VLM into intermediate eagle_content
5. Collate eagle_content into batched eagle_* tensors
6. Move tensors to device (GPU)
NOTE: We optionally apply min-max normalization to STATE and ACTION using
dataset-provided statistics prior to padding, mapping values to [-1, 1].
This mirrors SO100-style preprocessing and keeps scales consistent with GR00T.
Args:
config: Groot configuration containing data_config, embodiment_tag, etc.
dataset_stats: Optional per-key min/max statistics for normalization before padding.
Returns:
Tuple of (preprocessor, postprocessor) pipelines
"""
# Get horizon/dimension parameters from config
# These should match the config used for the pretrained model
# Default values match most GR00T configs (state_horizon=1, action_horizon=16)
state_horizon = 1
# CRITICAL: Pretrained GR00T models use action_horizon=16 max!
# The model architecture hardcodes this limit
action_horizon = min(config.chunk_size, 16)
max_state_dim = config.max_state_dim
max_action_dim = config.max_action_dim
# Pass raw dataset_stats; normalization will occur inside pack step before padding
padded_stats = dataset_stats or {}
# Define feature specs for optional normalization steps
_features: dict[str, PolicyFeature] = {
# Observation features (only add those we may normalize)
"observation.state": PolicyFeature(type=FeatureType.STATE, shape=(state_horizon, max_state_dim)),
# Action feature
"action": PolicyFeature(type=FeatureType.ACTION, shape=(action_horizon, max_action_dim)),
}
# Normalize STATE and ACTION with min_max (SO100-like default)
_norm_map = {
FeatureType.ACTION: NormalizationMode.MIN_MAX,
FeatureType.STATE: NormalizationMode.MIN_MAX,
}
# Determine env action dimension from config (simple, object-like PolicyFeature)
try:
env_action_dim = int(config.output_features["action"].shape[0])
except Exception:
env_action_dim = 0
input_steps: list[ProcessorStep] = [
# 1. Rename keys if needed (e.g., dataset-specific camera names)
# Leave empty for now - add mappings if your dataset uses different key names
RenameObservationsProcessorStep(rename_map={}),
# 2. Add batch dimension for single samples
AddBatchDimensionProcessorStep(),
# 3. Pack video/state/action/language/embodiment; apply optional min-max normalization before padding
GrootPackInputsStep(
state_horizon=state_horizon,
action_horizon=action_horizon,
max_state_dim=max_state_dim,
max_action_dim=max_action_dim,
language_key="task",
formalize_language=False,
embodiment_tag=config.embodiment_tag,
normalize_min_max=True,
stats=padded_stats,
),
# 4. Eagle encode (creates eagle_content)
GrootEagleEncodeStep(
tokenizer_assets_repo=config.tokenizer_assets_repo,
),
# 5. Collate eagle_content -> eagle_* tensors
GrootEagleCollateStep(
tokenizer_assets_repo=config.tokenizer_assets_repo,
),
# 6. Move to device
DeviceProcessorStep(device=config.device),
]
# Postprocessing: slice to env action dim and unnormalize to env scale, then move to CPU
output_steps: list[ProcessorStep] = [
GrootActionUnpackUnnormalizeStep(
env_action_dim=env_action_dim,
stats=padded_stats,
normalize_min_max=True,
),
# Finally, move to CPU for env interaction
DeviceProcessorStep(device="cpu"),
]
return (
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]](
steps=input_steps,
name=POLICY_PREPROCESSOR_DEFAULT_NAME,
),
PolicyProcessorPipeline[PolicyAction, PolicyAction](
steps=output_steps,
name=POLICY_POSTPROCESSOR_DEFAULT_NAME,
to_transition=policy_action_to_transition,
to_output=transition_to_policy_action,
),
)
# GR00T specific processor steps
def _to_uint8_np_bhwc(img_t: torch.Tensor) -> np.ndarray:
# img_t: (B, C, H, W) float in [0,1] or uint8
if img_t.dtype.is_floating_point:
img_t = (img_t.clamp(0, 1) * 255.0).to(torch.uint8)
return rearrange(img_t.cpu().numpy(), "b c h w -> b h w c")
def _build_eagle_processor(tokenizer_assets_repo: str = DEFAULT_TOKENIZER_ASSETS_REPO) -> ProcessorMixin:
# Validate that the cache directory is ready. If not, instruct the user.
cache_dir = HF_LEROBOT_HOME / tokenizer_assets_repo
required = [
cache_dir / "processor_config.json",
cache_dir / "preprocessor_config.json",
cache_dir / "image_processing_eagle2_5_vl_fast.py",
]
if not all(p.exists() for p in required):
raise FileNotFoundError(
f"[GROOT] Eagle processor cache at '{cache_dir}' is not populated. "
"Vendor files are copied during model creation. Create the policy/model first, "
"or call ensure_eagle_cache_ready() before building processors."
)
proc = AutoProcessor.from_pretrained(str(cache_dir), trust_remote_code=True, use_fast=True)
proc.tokenizer.padding_side = "left"
return proc
@dataclass
@ProcessorStepRegistry.register(name="groot_pack_inputs_v3")
class GrootPackInputsStep(ProcessorStep):
state_horizon: int = 1
action_horizon: int = 16
max_state_dim: int = 64
max_action_dim: int = 32
language_key: str = "task"
formalize_language: bool = False
embodiment_tag: str = "new_embodiment"
embodiment_mapping: dict[str, int] = field(
default_factory=lambda: {
"new_embodiment": 31, # Match original GR00T EMBODIMENT_TAG_MAPPING
"oxe_droid": 17,
"agibot_genie1": 26,
"gr1": 24,
"so100": 2,
"unitree_g1": 3,
}
)
# Min-max normalization (SO100-like) applied BEFORE padding
normalize_min_max: bool = True
stats: dict[str, dict[str, Any]] | None = None
def __call__(self, transition: EnvTransition) -> EnvTransition:
obs = transition.get(TransitionKey.OBSERVATION, {}) or {}
comp = transition.get(TransitionKey.COMPLEMENTARY_DATA, {}) or {}
def _align_vec(vec: Any, target_dim: int, *, default: float) -> torch.Tensor:
t = torch.as_tensor(vec)
t = t.flatten().to(
dtype=torch.float32,
device=next(
(v.device for v in obs.values() if isinstance(v, torch.Tensor)), torch.device("cpu")
),
)
d = int(t.shape[-1]) if t.numel() > 0 else 0
if d == target_dim:
return t
if d < target_dim:
pad = torch.full((target_dim - d,), default, dtype=t.dtype, device=t.device)
return torch.cat([t, pad], dim=0)
return t[:target_dim]
def _min_max_norm(x: torch.Tensor, key: str) -> torch.Tensor:
if not self.normalize_min_max:
return x
if self.stats is None or key not in self.stats:
return x
stats_k = self.stats[key]
last_dim = x.shape[-1]
min_v = _align_vec(stats_k.get("min", torch.zeros(last_dim)), last_dim, default=0.0)
max_v = _align_vec(stats_k.get("max", torch.ones(last_dim)), last_dim, default=1.0)
denom = max_v - min_v
mask = denom != 0
safe_denom = torch.where(mask, denom, torch.ones_like(denom))
mapped = 2 * (x - min_v) / safe_denom - 1
return torch.where(mask, mapped, torch.zeros_like(mapped))
# 1) Video (B, T=1, V, H, W, C) uint8
img_keys = sorted([k for k in obs if k.startswith("observation.images.")])
if not img_keys and "observation.image" in obs:
img_keys = ["observation.image"]
if img_keys:
cams = [_to_uint8_np_bhwc(obs[k]) for k in img_keys]
video = np.stack(cams, axis=1) # (B, V, H, W, C)
video = np.expand_dims(video, axis=1) # (B, 1, V, H, W, C)
# GR00T validates that video.shape[3] == 3 (channels), so reorder to (B, T, V, C, H, W)
video = np.transpose(video, (0, 1, 2, 5, 3, 4)) # (B, 1, V, C, H, W)
obs["video"] = video
# Drop raw images to avoid confusion downstream
for k in img_keys:
obs.pop(k, None)
# 2) Language (string)
lang = comp.get(self.language_key)
if isinstance(lang, list):
lang = lang[0] if len(lang) > 0 else None
if not lang:
lang = "Perform the task."
if self.formalize_language:
lang = (lang or "").lower()
lang = "".join(ch for ch in lang if ch.isalnum() or ch.isspace())
comp["language"] = lang
# 3) State/state_mask -> (B, 1, max_state_dim)
if "observation.state" in obs:
state = obs["observation.state"] # (B, D)
if state.dim() != 2:
raise ValueError(f"state must be (B, D), got {tuple(state.shape)}")
bsz, d = state.shape
# Normalize BEFORE padding
if self.normalize_min_max:
state = _min_max_norm(state, "observation.state")
state = state.unsqueeze(1) # (B, 1, D)
if d > self.max_state_dim:
state = state[:, :, : self.max_state_dim]
d = self.max_state_dim
elif d < self.max_state_dim:
pad = torch.zeros(bsz, 1, self.max_state_dim - d, dtype=state.dtype, device=state.device)
state = torch.cat([state, pad], dim=2)
state_mask = torch.zeros(bsz, 1, self.max_state_dim, dtype=torch.bool, device=state.device)
state_mask[:, :, :d] = True
obs["state"] = state
obs["state_mask"] = state_mask
# 4) Action/action_mask -> (B, action_horizon, max_action_dim)
action = transition.get(TransitionKey.ACTION)
if isinstance(action, torch.Tensor):
# Normalize BEFORE temporal expansion/padding
if self.normalize_min_max:
if action.dim() == 2:
action = _min_max_norm(action, "action")
elif action.dim() == 3:
b, t, d = action.shape
flat = action.reshape(b * t, d)
flat = _min_max_norm(flat, "action")
action = flat.view(b, t, d)
if action.dim() == 2:
action = action.unsqueeze(1).repeat(1, self.action_horizon, 1)
elif action.dim() == 3:
b, t, d = action.shape
if t < self.action_horizon:
last = action[:, -1:, :]
pad = last.repeat(1, self.action_horizon - t, 1)
action = torch.cat([action, pad], dim=1)
elif t > self.action_horizon:
action = action[:, : self.action_horizon, :]
else:
raise ValueError(f"action must be (B, D) or (B, T, D), got {tuple(action.shape)}")
b, t, d = action.shape
if d > self.max_action_dim:
action = action[:, :, : self.max_action_dim]
d = self.max_action_dim
elif d < self.max_action_dim:
pad = torch.zeros(b, t, self.max_action_dim - d, dtype=action.dtype, device=action.device)
action = torch.cat([action, pad], dim=2)
action_mask = torch.zeros(b, t, self.max_action_dim, dtype=torch.bool, device=action.device)
action_mask[:, :, :d] = True
transition[TransitionKey.ACTION] = action
comp["action_mask"] = action_mask
# 5) Embodiment id as LongTensor (B,)
emb_id = self.embodiment_mapping.get(self.embodiment_tag, 0)
# Infer batch size/device from any tensor in obs or action
bsz = None
device = torch.device("cpu")
for v in list(obs.values()) + [transition.get(TransitionKey.ACTION)]:
if isinstance(v, torch.Tensor):
bsz = v.shape[0]
device = v.device
break
if bsz is None and "video" in obs and isinstance(obs["video"], np.ndarray):
bsz = obs["video"].shape[0]
if bsz is None:
bsz = 1
comp["embodiment_id"] = torch.full((bsz,), emb_id, dtype=torch.long, device=device)
transition[TransitionKey.OBSERVATION] = obs
transition[TransitionKey.COMPLEMENTARY_DATA] = comp
return transition
# Pipeline API requirement: declare how features change (we keep it simple)
def transform_features(self, features):
return features
def get_config(self) -> dict[str, Any]:
"""
Returns a serializable dictionary of the processor's configuration.
Excludes 'stats' since they are saved separately via state_dict().
"""
return {
"state_horizon": self.state_horizon,
"action_horizon": self.action_horizon,
"max_state_dim": self.max_state_dim,
"max_action_dim": self.max_action_dim,
"language_key": self.language_key,
"formalize_language": self.formalize_language,
"embodiment_tag": self.embodiment_tag,
"embodiment_mapping": self.embodiment_mapping,
"normalize_min_max": self.normalize_min_max,
}
def state_dict(self) -> dict[str, torch.Tensor]:
"""
Returns normalization statistics as a flat state dictionary.
This enables saving stats to safetensors files, similar to normalizer_processor.
"""
if not self.stats:
return {}
flat: dict[str, torch.Tensor] = {}
for key, sub in self.stats.items():
for stat_name, value in sub.items():
tensor = torch.as_tensor(value).cpu()
flat[f"{key}.{stat_name}"] = tensor
return flat
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
"""
Loads normalization statistics from a flat state dictionary.
This enables loading stats from safetensors files during from_pretrained.
"""
if not state:
return
reconstructed: dict[str, dict[str, Any]] = {}
for flat_key, tensor in state.items():
if "." in flat_key:
key, stat_name = flat_key.rsplit(".", 1)
if key not in reconstructed:
reconstructed[key] = {}
reconstructed[key][stat_name] = tensor
if reconstructed:
self.stats = reconstructed
@dataclass
@ProcessorStepRegistry.register(name="groot_eagle_encode_v3")
class GrootEagleEncodeStep(ProcessorStep):
tokenizer_assets_repo: str = DEFAULT_TOKENIZER_ASSETS_REPO
_proc: ProcessorMixin | None = field(default=None, init=False, repr=False)
@property
def proc(self) -> ProcessorMixin:
if self._proc is None:
self._proc = _build_eagle_processor(self.tokenizer_assets_repo)
return self._proc
def __call__(self, transition: EnvTransition) -> EnvTransition:
obs = transition.get(TransitionKey.OBSERVATION, {}) or {}
comp = transition.get(TransitionKey.COMPLEMENTARY_DATA, {}) or {}
if "video" not in obs:
return transition
video = obs["video"] # (B, T, V, H, W, C) uint8
lang = comp.get("language", "Perform the task.")
if isinstance(lang, list):
lang = lang[0] if len(lang) > 0 else "Perform the task."
bsz = video.shape[0]
eagle_contents: list[dict[str, Any]] = []
for b in range(bsz):
vt = video[b] # (T, V, C, H, W) after reorder
if vt.ndim != 5:
# Fallback: assume (T, V, H, W, C)
t, v, h, w, c = vt.shape
flat = rearrange(vt, "t v h w c -> (t v) h w c")
else:
t, v, c, h, w = vt.shape
flat = rearrange(vt, "t v c h w -> (t v) h w c")
images = [Image.fromarray(flat[i]) for i in range(t * v)]
# Format language as string list representation to match Original GROOT
lang_formatted = str([lang])
text_content = [{"type": "text", "text": lang_formatted}]
image_content = [{"type": "image", "image": img} for img in images]
conv = [{"role": "user", "content": image_content + text_content}]
text_list = [self.proc.apply_chat_template(conv, tokenize=False, add_generation_prompt=True)]
img_inputs, vid_inputs = self.proc.process_vision_info(conv)
eagle_contents.append(
{
"text_list": text_list,
"image_inputs": img_inputs,
"video_inputs": vid_inputs,
}
)
comp["eagle_content"] = eagle_contents
transition[TransitionKey.OBSERVATION] = obs
transition[TransitionKey.COMPLEMENTARY_DATA] = comp
return transition
# Pipeline API requirement: declare how features change (no schema change here)
def transform_features(self, features):
return features
# Original GR00T-style collate: converts eagle_content -> eagle_* tensors
def collate(features: list[dict[str, Any]], eagle_processor: ProcessorMixin) -> dict[str, Any]:
batch: dict[str, Any] = {}
keys = features[0].keys()
for key in keys:
values = [elem[key] for elem in features]
if key == "eagle_content":
text_list: list[str] = []
image_inputs: list[Any] = []
for v in values:
curr_text_list = v["text_list"]
curr_image_inputs = v["image_inputs"]
text_list += curr_text_list
image_inputs += curr_image_inputs
eagle_inputs = eagle_processor(
text=text_list,
images=image_inputs,
images_kwargs={"min_dynamic_tiles": 1, "max_dynamic_tiles": 1, "use_thumbnail": False},
return_tensors="pt",
padding=True,
)
for k, v in eagle_inputs.items():
k = "eagle_" + k
batch[k] = v
elif key in ("pixel_values", "image_grid_thw", "attention_mask", "input_ids"):
# Concat in existing batch dimension.
batch[key] = torch.cat(values)
else:
# state, state_mask, action and action_mask.
# Stack to form the batch dimension.
batch[key] = torch.from_numpy(np.stack(values))
return batch
@dataclass
@ProcessorStepRegistry.register(name="groot_eagle_collate_v3")
class GrootEagleCollateStep(ProcessorStep):
tokenizer_assets_repo: str = DEFAULT_TOKENIZER_ASSETS_REPO
_proc: ProcessorMixin | None = field(default=None, init=False, repr=False)
@property
def proc(self) -> ProcessorMixin:
if self._proc is None:
self._proc = _build_eagle_processor(self.tokenizer_assets_repo)
return self._proc
def __call__(self, transition: EnvTransition) -> EnvTransition:
obs = transition.get(TransitionKey.OBSERVATION, {}) or {}
comp = transition.get(TransitionKey.COMPLEMENTARY_DATA, {}) or {}
contents = comp.get("eagle_content")
if not contents:
return transition
# Build features list as original API expects: one dict per batch item
features = [{"eagle_content": content} for content in contents]
batched = collate(features, self.proc)
# Inject eagle_* tensors and remove the temporary content and raw video to free memory
for k, v in batched.items():
comp[k] = v
comp.pop("eagle_content", None)
obs.pop(
"video", None
) # The video has been fully encoded into eagle_* tensors, so we don't need the raw video anymore
transition[TransitionKey.OBSERVATION] = obs
transition[TransitionKey.COMPLEMENTARY_DATA] = comp
return transition
def transform_features(self, features):
return features
@dataclass
@ProcessorStepRegistry.register(name="groot_action_unpack_unnormalize_v1")
class GrootActionUnpackUnnormalizeStep(ProcessorStep):
env_action_dim: int = 0
# Apply inverse of min-max normalization if it was used in preprocessor
normalize_min_max: bool = True
stats: dict[str, dict[str, Any]] | None = None
def __call__(self, transition: EnvTransition) -> EnvTransition:
# Expect model outputs to be in TransitionKey.ACTION as (B, T, D_model)
action = transition.get(TransitionKey.ACTION)
if not isinstance(action, torch.Tensor):
return transition
# Select last timestep and slice to env dimension
if action.dim() == 3:
action = action[:, -1, :]
# Now action is (B, D_model)
if self.env_action_dim and action.shape[-1] >= self.env_action_dim:
action = action[..., : self.env_action_dim]
# Inverse min-max normalization mirroring _min_max_norm:
# forward: y = 2 * (x - min) / denom - 1, with y=0 when denom==0
# inverse: x = (y+1)/2 * denom + min, and when denom==0 -> x = min
if self.normalize_min_max and self.stats is not None:
stats_k = self.stats.get("action", {})
d = action.shape[-1]
min_v = torch.as_tensor(
stats_k.get("min", torch.zeros(d)), dtype=action.dtype, device=action.device
)
max_v = torch.as_tensor(
stats_k.get("max", torch.ones(d)), dtype=action.dtype, device=action.device
)
if min_v.numel() != d:
min_v = torch.nn.functional.pad(min_v.flatten()[:d], (0, max(0, d - min_v.numel())))
min_v = min_v.to(action.device, dtype=action.dtype)
if max_v.numel() != d:
max_v = torch.nn.functional.pad(max_v.flatten()[:d], (0, max(0, d - max_v.numel())))
max_v = max_v.to(action.device, dtype=action.dtype)
denom = max_v - min_v
mask = denom != 0
safe_denom = torch.where(mask, denom, torch.ones_like(denom))
inv = (action + 1.0) * 0.5 * safe_denom + min_v
action = torch.where(mask, inv, min_v)
transition[TransitionKey.ACTION] = action
return transition
def transform_features(self, features):
return features
def get_config(self) -> dict[str, Any]:
"""
Returns a serializable dictionary of the processor's configuration.
Excludes 'stats' since they are saved separately via state_dict().
"""
return {
"env_action_dim": self.env_action_dim,
"normalize_min_max": self.normalize_min_max,
}
def state_dict(self) -> dict[str, torch.Tensor]:
"""
Returns normalization statistics as a flat state dictionary.
This enables saving stats to safetensors files, similar to normalizer_processor.
"""
if not self.stats:
return {}
flat: dict[str, torch.Tensor] = {}
for key, sub in self.stats.items():
for stat_name, value in sub.items():
tensor = torch.as_tensor(value).cpu()
flat[f"{key}.{stat_name}"] = tensor
return flat
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
"""
Loads normalization statistics from a flat state dictionary.
This enables loading stats from safetensors files during from_pretrained.
"""
if not state:
return
reconstructed: dict[str, dict[str, Any]] = {}
for flat_key, tensor in state.items():
if "." in flat_key:
key, stat_name = flat_key.rsplit(".", 1)
if key not in reconstructed:
reconstructed[key] = {}
reconstructed[key][stat_name] = tensor
if reconstructed:
self.stats = reconstructed

View File

@@ -0,0 +1,47 @@
from pathlib import Path
from shutil import copytree
from huggingface_hub import hf_hub_download
def ensure_eagle_cache_ready(vendor_dir: Path, cache_dir: Path, assets_repo: str) -> None:
"""Populate the Eagle processor directory in cache and ensure tokenizer assets exist.
- Copies the vendored Eagle files into cache_dir (overwriting when needed).
- Downloads vocab.json and merges.txt into the same cache_dir if missing.
"""
cache_dir = Path(cache_dir)
vendor_dir = Path(vendor_dir)
try:
# Populate/refresh cache with vendor files to ensure a complete processor directory
print(f"[GROOT] Copying vendor Eagle files to cache: {vendor_dir} -> {cache_dir}")
copytree(vendor_dir, cache_dir, dirs_exist_ok=True)
except Exception as exc: # nosec: B110
print(f"[GROOT] Warning: Failed to copy vendor Eagle files to cache: {exc}")
required_assets = [
"vocab.json",
"merges.txt",
"added_tokens.json",
"chat_template.json",
"special_tokens_map.json",
"config.json",
"generation_config.json",
"preprocessor_config.json",
"processor_config.json",
"tokenizer_config.json",
]
print(f"[GROOT] Assets repo: {assets_repo} \n Cache dir: {cache_dir}")
for fname in required_assets:
dst = cache_dir / fname
if not dst.exists():
print(f"[GROOT] Fetching {fname}")
hf_hub_download(
repo_id=assets_repo,
filename=fname,
repo_type="model",
local_dir=str(cache_dir),
)

View File

@@ -505,14 +505,17 @@ def eval_main(cfg: EvalPipelineConfig):
)
policy.eval()
# The inference device is automatically set to match the detected hardware, overriding any previous device settings from training to ensure compatibility.
preprocessor_overrides = {
"device_processor": {"device": str(policy.config.device)},
"rename_observations_processor": {"rename_map": cfg.rename_map},
}
preprocessor, postprocessor = make_pre_post_processors(
policy_cfg=cfg.policy,
pretrained_path=cfg.policy.pretrained_path,
# The inference device is automatically set to match the detected hardware, overriding any previous device settings from training to ensure compatibility.
preprocessor_overrides={
"device_processor": {"device": str(policy.config.device)},
"rename_observations_processor": {"rename_map": cfg.rename_map},
},
preprocessor_overrides=preprocessor_overrides,
)
with torch.no_grad(), torch.autocast(device_type=device.type) if cfg.policy.use_amp else nullcontext():
info = eval_policy_all(

View File

@@ -62,6 +62,7 @@ def is_package_available(pkg_name: str, return_version: bool = False) -> tuple[b
_transformers_available = is_package_available("transformers")
_peft_available = is_package_available("peft")
def make_device_from_device_class(config: ChoiceRegistry) -> Any:

View File

@@ -0,0 +1,207 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test script for LeRobot's Groot policy forward and inference passes."""
import gc
import os
from copy import deepcopy
from typing import Any
import numpy as np
import pytest
import torch
from lerobot.policies.groot.configuration_groot import GrootConfig
from lerobot.policies.groot.modeling_groot import GrootPolicy
from lerobot.policies.groot.processor_groot import make_groot_pre_post_processors
from lerobot.processor import PolicyAction, PolicyProcessorPipeline
from lerobot.utils.utils import auto_select_torch_device
from tests.utils import require_cuda # noqa: E402
pytest.importorskip("transformers")
pytestmark = pytest.mark.skipif(
os.environ.get("CI") == "true" or os.environ.get("GITHUB_ACTIONS") == "true",
reason="This test requires local Groot installation and is not meant for CI",
)
# Define constants for dummy data
DUMMY_STATE_DIM = 44
DUMMY_ACTION_DIM = 44
DUMMY_ACTION_HORIZON = 16
IMAGE_SIZE = 256
DEVICE = auto_select_torch_device()
MODEL_PATH = "aractingi/bimanual-handover-groot-10k"
def cleanup_memory():
"""Clean up GPU/MPS memory to prevent OOM errors between tests."""
print("\nCleaning up memory...")
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
if torch.backends.mps.is_available():
torch.mps.empty_cache()
print("Memory cleanup complete.")
def set_seed_all(seed: int):
"""Set random seed for all RNG sources to ensure reproducibility."""
import random
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Set deterministic behavior
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True, warn_only=True)
def instantiate_lerobot_groot(
from_pretrained: bool = False,
model_path: str = MODEL_PATH,
) -> tuple[
GrootPolicy,
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""Instantiate LeRobot Groot policy with preprocessor and postprocessor."""
if from_pretrained:
policy = GrootPolicy.from_pretrained(
pretrained_name_or_path=model_path,
strict=False,
)
policy.config.embodiment_tag = "gr1"
else:
config = GrootConfig(
base_model_path=model_path,
n_action_steps=DUMMY_ACTION_HORIZON,
chunk_size=DUMMY_ACTION_HORIZON,
image_size=[IMAGE_SIZE, IMAGE_SIZE],
device=DEVICE,
embodiment_tag="gr1",
)
policy = GrootPolicy(config)
policy.to(DEVICE)
policy.config.device = DEVICE
preprocessor, postprocessor = make_groot_pre_post_processors(
config=policy.config,
dataset_stats=None, # Pass None for dataset_stats to disable normalization (original GR00T doesn't normalize)
)
return (policy, preprocessor, postprocessor)
def create_dummy_data(device=DEVICE):
"""Create a dummy data batch for testing."""
batch_size = 2
prompt = "Pick up the red cube and place it in the bin"
state = torch.randn(batch_size, DUMMY_STATE_DIM, dtype=torch.float32, device=device)
batch = {
"observation.state": state,
"action": torch.randn(
batch_size,
DUMMY_ACTION_HORIZON,
DUMMY_ACTION_DIM,
dtype=torch.float32,
device=device, # Action ground truth (for training)
),
"observation.images.ego_view": torch.rand(
batch_size,
3,
IMAGE_SIZE,
IMAGE_SIZE,
dtype=torch.float32,
device=device, # Images in [0, 1] range as expected by LeRobot
),
"task": [prompt for _ in range(batch_size)],
}
return batch
@require_cuda
def test_lerobot_groot_inference():
"""Test the inference pass (select_action) of LeRobot's Groot policy."""
print("Test: LeRobot Groot Inference Pass")
set_seed_all(42)
# Instantiate policy and processors
lerobot_policy, lerobot_preprocessor, lerobot_postprocessor = instantiate_lerobot_groot(
from_pretrained=True
)
batch = create_dummy_data()
print("\n[LeRobot] Running inference...")
lerobot_policy.eval()
batch_lerobot_processed = lerobot_preprocessor(deepcopy(batch))
# Ensure identical RNG state before inference
torch.manual_seed(42)
with torch.no_grad():
lerobot_action = lerobot_policy.select_action(batch_lerobot_processed)
print(f"\nInference successful. Output action shape: {lerobot_action.shape}")
print("Output actions (first 5 dims):")
print(lerobot_action[:, :5])
lerobot_action = lerobot_postprocessor(lerobot_action)
del lerobot_policy, lerobot_preprocessor, lerobot_postprocessor, batch
cleanup_memory()
@require_cuda
def test_lerobot_groot_forward_pass():
"""Test the forward pass of LeRobot's Groot policy."""
print("\n" + "=" * 50)
print("Test: LeRobot Groot Forward Pass (Training Mode)")
set_seed_all(42)
# Instantiate policy and processors
lerobot_policy, lerobot_preprocessor, _ = instantiate_lerobot_groot(from_pretrained=True)
batch = create_dummy_data()
lerobot_policy.eval()
print("\n[LeRobot] Running forward pass...")
batch_lerobot_processed = lerobot_preprocessor(deepcopy(batch))
set_seed_all(42)
with torch.no_grad():
lerobot_loss, lerobot_metrics = lerobot_policy.forward(batch_lerobot_processed)
print("\nForward pass successful.")
print(f" - Loss: {lerobot_loss.item():.6f}")
print(f" - Metrics: {lerobot_metrics}")
del lerobot_policy, lerobot_preprocessor, batch
cleanup_memory()

View File

@@ -0,0 +1,443 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test script to verify Groot policy integration with LeRobot vs the original implementation, only meant to be run locally!"""
import gc
import os
from copy import deepcopy
from typing import Any
import numpy as np
import pytest
import torch
from lerobot.policies.groot.configuration_groot import GrootConfig
from lerobot.policies.groot.modeling_groot import GrootPolicy
from lerobot.policies.groot.processor_groot import make_groot_pre_post_processors
from lerobot.processor import PolicyAction, PolicyProcessorPipeline
pytest.importorskip("gr00t")
pytest.importorskip("transformers")
pytestmark = pytest.mark.skipif(
os.environ.get("CI") == "true" or os.environ.get("GITHUB_ACTIONS") == "true",
reason="This test requires local Groot installation and is not meant for CI",
)
from gr00t.data.dataset import ModalityConfig # noqa: E402
from gr00t.data.embodiment_tags import EmbodimentTag # noqa: E402
from gr00t.data.transform.base import ComposedModalityTransform # noqa: E402
from gr00t.model.policy import Gr00tPolicy # noqa: E402
# GR1 humanoid dimensions (from pretrained model metadata)
# The actual GR1 robot has 44 dimensions for both state and action
# GR00TTransform will pad state to 64 and truncate action to 32
DUMMY_STATE_DIM = 44
DUMMY_ACTION_DIM = 44
DUMMY_ACTION_HORIZON = 16
IMAGE_SIZE = 256
DEVICE = "cpu"
MODEL_PATH = "nvidia/GR00T-N1.5-3B"
GR1_BODY_PARTS = {
"left_arm": 7,
"left_hand": 6,
"left_leg": 6,
"neck": 3,
"right_arm": 7,
"right_hand": 6,
"right_leg": 6,
"waist": 3,
}
def cleanup_memory():
"""Clean up GPU/MPS memory to prevent OOM errors between tests."""
print("\nCleaning up memory...")
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
if torch.backends.mps.is_available():
torch.mps.empty_cache()
print("Memory cleanup complete.")
def set_seed_all(seed: int):
"""Set random seed for all RNG sources to ensure reproducibility."""
import random
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Set deterministic behavior
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True, warn_only=True)
def instantiate_lerobot_groot(
from_pretrained: bool = False,
model_path: str = MODEL_PATH,
) -> tuple[
GrootPolicy,
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""Instantiate LeRobot Groot policy with preprocessor and postprocessor."""
if from_pretrained:
policy = GrootPolicy.from_pretrained(
pretrained_name_or_path=model_path,
strict=False,
)
policy.config.embodiment_tag = "gr1"
else:
config = GrootConfig(
base_model_path=model_path,
n_action_steps=DUMMY_ACTION_HORIZON,
chunk_size=DUMMY_ACTION_HORIZON,
image_size=[IMAGE_SIZE, IMAGE_SIZE],
device=DEVICE,
embodiment_tag="gr1",
)
policy = GrootPolicy(config)
policy.to(DEVICE)
policy.config.device = DEVICE
preprocessor, postprocessor = make_groot_pre_post_processors(
config=policy.config,
dataset_stats=None, # Pass None for dataset_stats to disable normalization (original GR00T doesn't normalize)
)
return (policy, preprocessor, postprocessor)
def instantiate_original_groot(
from_pretrained: bool = False,
model_path: str = MODEL_PATH,
):
"""Instantiate original Groot policy from NVIDIA's implementation."""
from gr00t.data.transform.concat import ConcatTransform
from gr00t.data.transform.state_action import StateActionToTensor
from gr00t.data.transform.video import VideoToNumpy, VideoToTensor
from gr00t.model.transforms import GR00TTransform
video_keys = ["video.ego_view"]
state_keys = [
"state"
] # Important: Use single concatenated "state" key (not split body parts) to match preprocessing
action_keys = [
"action.left_arm",
"action.right_arm",
"action.left_hand",
"action.right_hand",
"action.left_leg",
"action.right_leg",
"action.neck",
"action.waist",
]
language_keys = ["annotation.human.action.task_description"]
modality_config = {
"video": ModalityConfig(
delta_indices=[0], # Current frame only
modality_keys=video_keys,
),
"state": ModalityConfig(
delta_indices=[0],
modality_keys=state_keys,
),
"action": ModalityConfig(
delta_indices=list(range(DUMMY_ACTION_HORIZON)),
modality_keys=action_keys,
),
"language": ModalityConfig(
delta_indices=[0],
modality_keys=language_keys,
),
}
modality_transform = ComposedModalityTransform(
transforms=[
VideoToTensor(apply_to=video_keys),
VideoToNumpy(apply_to=video_keys), # Convert to numpy (GR00TTransform expects numpy arrays)
# State is already a single concatenated key, so no StateActionToTensor needed
# Convert action from numpy to tensor
StateActionToTensor(apply_to=action_keys),
# Concatenate only video and actions (state is already single key)
ConcatTransform(
video_concat_order=video_keys,
state_concat_order=[], # Empty:state is already single key
action_concat_order=action_keys,
),
GR00TTransform(
max_state_dim=64,
max_action_dim=32,
state_horizon=1,
action_horizon=DUMMY_ACTION_HORIZON,
training=False,
),
]
)
policy = Gr00tPolicy(
model_path=model_path,
embodiment_tag=EmbodimentTag.GR1,
modality_config=modality_config,
modality_transform=modality_transform,
device=DEVICE,
)
return policy, modality_config, modality_transform
def create_dummy_data(device=DEVICE):
"""Create dummy data for testing both implementations."""
batch_size = 2
prompt = "Pick up the red cube and place it in the bin"
state = torch.randn(batch_size, DUMMY_STATE_DIM, dtype=torch.float32, device=device)
batch = {
"observation.state": state,
"action": torch.randn(
batch_size,
DUMMY_ACTION_HORIZON,
DUMMY_ACTION_DIM,
dtype=torch.float32,
device=device, # Action ground truth (for training)
),
"observation.images.ego_view": torch.rand(
batch_size,
3,
IMAGE_SIZE,
IMAGE_SIZE,
dtype=torch.float32,
device=device, # Images in [0, 1] range as expected by LeRobot
),
"task": [prompt for _ in range(batch_size)],
}
return batch
def convert_lerobot_to_original_format(batch, modality_config):
"""Convert LeRobot batch format to original Groot format.
The original Groot expects observations in this format:
{
"video.<camera_name>": np.ndarray (T, H, W, C) or (B, T, H, W, C)
"state.<state_component>": np.ndarray (T, D) or (B, T, D)
"action.<action_component>": np.ndarray (T, D) or (B, T, D)
"annotation.<annotation_type>": str or list[str]
}
"""
# Original Groot expects (T, H, W, C) format for images
# LeRobot has (B, C, H, W) format, so we need to convert
observation = {}
for img_key in ["ego_view"]:
lerobot_key = f"observation.images.{img_key}"
if lerobot_key in batch:
img = batch[lerobot_key]
# Convert from (B, C, H, W) to (B, T=1, H, W, C)
img_np = img.permute(0, 2, 3, 1).unsqueeze(1).cpu().numpy()
# Convert [0, 1] to [0, 255] uint8 as expected by original
img_np = (img_np * 255).astype(np.uint8)
observation[f"video.{img_key}"] = img_np
# Important: The Original's GR00TTransform expects "state" as (B, T, D), not split body parts
if "observation.state" in batch:
state = batch["observation.state"]
state_np = state.unsqueeze(1).cpu().numpy() # (B, 1, D)
observation["state"] = state_np
if "action" in batch:
action = batch["action"]
action_np = action.cpu().numpy()
start_idx = 0
for part_name, part_dim in GR1_BODY_PARTS.items():
end_idx = start_idx + part_dim
observation[f"action.{part_name}"] = action_np[:, :, start_idx:end_idx]
start_idx = end_idx
if "task" in batch:
task_list = batch["task"]
# GR00TTransform expects language with (B, T) shape for batched data
# Create a (B, T=1) array where each element is the string directly
bsz = len(task_list)
task_array = np.empty((bsz, 1), dtype=object)
for i in range(bsz):
task_array[i, 0] = task_list[i] # Assign string directly to each (i, 0) position
observation["annotation.human.action.task_description"] = task_array
return observation
def test_groot_original_vs_lerobot_pretrained():
"""Test Groot original implementation vs LeRobot implementation with pretrained weights."""
print("Test: Groot Original vs LeRobot with Pretrained Weights (Inference)")
set_seed_all(42)
lerobot_policy, lerobot_preprocessor, lerobot_postprocessor = instantiate_lerobot_groot(
from_pretrained=True
)
original_policy, modality_config, modality_transform = instantiate_original_groot(from_pretrained=True)
batch = create_dummy_data()
batch_lerobot = deepcopy(batch)
print("\n[LeRobot] Running inference...")
lerobot_policy.eval()
batch_lerobot_processed = lerobot_preprocessor(batch_lerobot)
# Important: Reset seed immediately before inference to ensure identical RNG state
torch.manual_seed(42)
with torch.no_grad():
lerobot_actions = lerobot_policy.select_action(batch_lerobot_processed)
print("\n[Original] Running inference...")
original_policy.model.eval()
observation = convert_lerobot_to_original_format(batch, modality_config)
original_obs_transformed = modality_transform(deepcopy(observation))
# Important: Reset seed immediately before inference to ensure identical RNG state
torch.manual_seed(42)
with torch.no_grad():
original_model_output = original_policy.model.get_action(original_obs_transformed)
original_actions_raw = original_model_output["action_pred"] # [2, 16, 32]
# Take first timestep
original_actions = original_actions_raw[:, 0, :].to(lerobot_actions.device).to(lerobot_actions.dtype)
print("Action Comparison:")
diff = lerobot_actions - original_actions
abs_diff = torch.abs(diff)
for batch_idx in range(lerobot_actions.shape[0]):
print(f"\n{'=' * 60}")
print(f"Batch {batch_idx}")
print(f"{'=' * 60}")
print(f"{'Idx':<5} {'LeRobot':<14} {'Original':<14} {'Difference':<14}")
print("-" * 60)
for action_idx in range(lerobot_actions.shape[1]):
lr_val = lerobot_actions[batch_idx, action_idx].item()
orig_val = original_actions[batch_idx, action_idx].item()
diff_val = abs(lr_val - orig_val)
sign = "+" if (lr_val - orig_val) > 0 else "-"
print(f"{action_idx:<5} {lr_val:>13.6f} {orig_val:>13.6f} {sign}{diff_val:>12.6f}")
max_diff = abs_diff.max().item()
tolerance = 0.001
assert torch.allclose(lerobot_actions, original_actions, atol=tolerance), (
f"Actions differ by more than tolerance ({tolerance}): max diff = {max_diff:.6f}"
)
print(f"\nSuccess: Actions match within tolerance ({tolerance})!")
del lerobot_policy, lerobot_preprocessor, lerobot_postprocessor
del original_policy, modality_config, modality_transform
del batch, batch_lerobot, observation
cleanup_memory()
def test_groot_forward_pass_comparison():
"""Test forward pass comparison between LeRobot and Original Groot implementations."""
print("Test: Forward Pass Comparison (Training Mode)")
set_seed_all(42)
lerobot_policy, lerobot_preprocessor, lerobot_postprocessor = instantiate_lerobot_groot(
from_pretrained=True
)
original_policy, modality_config, modality_transform = instantiate_original_groot(from_pretrained=True)
batch = create_dummy_data()
lerobot_policy.eval()
original_policy.model.eval()
print("\n[LeRobot] Running forward pass...")
batch_lerobot = deepcopy(batch)
batch_lerobot_processed = lerobot_preprocessor(batch_lerobot)
set_seed_all(42)
with torch.no_grad():
lerobot_loss, lerobot_metrics = lerobot_policy.forward(batch_lerobot_processed)
print(f" Loss: {lerobot_loss.item():.6f}")
print("\n[Original] Running forward pass...")
observation = convert_lerobot_to_original_format(batch, modality_config)
transformed_obs = modality_transform(observation)
if "action" not in transformed_obs:
action_for_forward = batch_lerobot_processed["action"]
action_mask_for_forward = batch_lerobot_processed["action_mask"]
# Match action horizon if needed
if action_for_forward.shape[1] != original_policy.model.action_horizon:
if action_for_forward.shape[1] < original_policy.model.action_horizon:
pad_size = original_policy.model.action_horizon - action_for_forward.shape[1]
last_action = action_for_forward[:, -1:, :]
padding = last_action.repeat(1, pad_size, 1)
action_for_forward = torch.cat([action_for_forward, padding], dim=1)
mask_padding = torch.zeros(
action_mask_for_forward.shape[0],
pad_size,
action_mask_for_forward.shape[2],
dtype=action_mask_for_forward.dtype,
device=action_mask_for_forward.device,
)
action_mask_for_forward = torch.cat([action_mask_for_forward, mask_padding], dim=1)
else:
action_for_forward = action_for_forward[:, : original_policy.model.action_horizon, :]
action_mask_for_forward = action_mask_for_forward[
:, : original_policy.model.action_horizon, :
]
transformed_obs["action"] = action_for_forward
transformed_obs["action_mask"] = action_mask_for_forward
set_seed_all(42)
with torch.no_grad():
original_outputs = original_policy.model.forward(transformed_obs)
original_loss = original_outputs["loss"]
print(f" Loss: {original_loss.item():.6f}")
loss_diff = abs(lerobot_loss.item() - original_loss.item())
loss_rel_diff = loss_diff / (abs(original_loss.item()) + 1e-8) * 100
print("\nLoss Values:")
print(f" LeRobot: {lerobot_loss.item():.6f}")
print(f" Original: {original_loss.item():.6f}")
print(f" Absolute difference: {loss_diff:.6f}")
print(f" Relative difference: {loss_rel_diff:.2f}%")
del lerobot_policy, lerobot_preprocessor, lerobot_postprocessor
del original_policy, modality_config, modality_transform
del batch, batch_lerobot, observation, transformed_obs
cleanup_memory()