forked from tangger/lerobot
fix update
This commit is contained in:
@@ -24,13 +24,11 @@ from lerobot.common.utils.utils import (
|
||||
from lerobot.scripts.eval import eval_policy
|
||||
|
||||
|
||||
def update_policy(policy, batch, optimizer, lr_scheduler=None):
|
||||
def update_policy(cfg, policy, batch, optimizer, lr_scheduler=None):
|
||||
start_time = time.time()
|
||||
|
||||
# Diffusion
|
||||
policy.diffusion.train()
|
||||
# Act
|
||||
policy.train()
|
||||
model = policy.diffusion if hasattr(policy, "diffusion") else policy # TODO: hacky, remove this line
|
||||
model.train()
|
||||
|
||||
batch = policy.normalize_inputs(batch)
|
||||
|
||||
@@ -43,7 +41,7 @@ def update_policy(policy, batch, optimizer, lr_scheduler=None):
|
||||
model = policy.diffusion if hasattr(policy, "diffusion") else policy # TODO: hacky, remove this line
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
model.parameters(),
|
||||
policy.cfg.grad_clip_norm,
|
||||
cfg.grad_clip_norm,
|
||||
error_if_nonfinite=False,
|
||||
)
|
||||
|
||||
@@ -58,7 +56,7 @@ def update_policy(policy, batch, optimizer, lr_scheduler=None):
|
||||
info = {
|
||||
"loss": loss.item(),
|
||||
"grad_norm": float(grad_norm),
|
||||
"lr": policy.cfg.lr if lr_scheduler is None else lr_scheduler.get_last_lr()[0],
|
||||
"lr": optimizer.param_groups[0]['lr'],
|
||||
"update_s": time.time() - start_time,
|
||||
}
|
||||
|
||||
@@ -283,10 +281,10 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
{"params": [p for n, p in policy.named_parameters() if not n.startswith("backbone") and p.requires_grad]},
|
||||
{
|
||||
"params": [p for n, p in policy.named_parameters() if n.startswith("backbone") and p.requires_grad],
|
||||
"lr": policy.cfg.lr_backbone,
|
||||
"lr": cfg.lr_backbone,
|
||||
},
|
||||
]
|
||||
optimizer = torch.optim.AdamW(optimizer_params_dicts, lr=policy.cfg.lr, weight_decay=policy.cfg.weight_decay)
|
||||
optimizer = torch.optim.AdamW(optimizer_params_dicts, lr=cfg.lr, weight_decay=cfg.weight_decay)
|
||||
lr_scheduler = None
|
||||
elif isinstance(policy, DiffusionPolicy):
|
||||
optimizer = torch.optim.Adam(
|
||||
@@ -364,7 +362,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
for key in batch:
|
||||
batch[key] = batch[key].to(cfg.device, non_blocking=True)
|
||||
|
||||
train_info = update_policy(policy, batch, optimizer, lr_scheduler)
|
||||
train_info = update_policy(cfg, policy, batch, optimizer, lr_scheduler)
|
||||
|
||||
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
|
||||
if step % cfg.log_freq == 0:
|
||||
|
||||
Reference in New Issue
Block a user