forked from tangger/lerobot
fix: streams inference process using LIFO on obs
This commit is contained in:
@@ -1,68 +1,94 @@
|
||||
import torch
|
||||
import grpc
|
||||
import itertools
|
||||
import time
|
||||
import threading
|
||||
import numpy as np
|
||||
from concurrent import futures
|
||||
from queue import Queue
|
||||
from typing import Generator, List
|
||||
|
||||
import async_inference_pb2 # type: ignore
|
||||
import async_inference_pb2_grpc # type: ignore
|
||||
import grpc
|
||||
import numpy as np
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
|
||||
from lerobot.common.robot_devices.control_utils import predict_action
|
||||
from lerobot.common.policies.pretrained import PreTrainedPolicy
|
||||
from typing import Optional
|
||||
from lerobot.scripts.server.robot_client import TimedObservation
|
||||
|
||||
inference_latency = 1 / 3
|
||||
idle_wait = 0.1
|
||||
|
||||
|
||||
def get_device():
|
||||
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
class PolicyServer(async_inference_pb2_grpc.AsyncInferenceServicer):
|
||||
def __init__(self, policy: PreTrainedPolicy = None):
|
||||
def __init__(self, policy: PreTrainedPolicy = None):
|
||||
# TODO: Add code for loading and using policy for inference
|
||||
self.policy = policy
|
||||
# TODO: Add device specification for policy inference at init
|
||||
self.observation = None
|
||||
|
||||
self.lock = threading.Lock()
|
||||
# keeping a list of all observations received from the robot client
|
||||
self.observations = []
|
||||
|
||||
def Ready(self, request, context):
|
||||
# TODO: Add device specification for policy inference at init
|
||||
# Initialize dataset action generator
|
||||
self.action_generator = itertools.cycle(self._stream_action_chunks_from_dataset())
|
||||
|
||||
self._setup_server()
|
||||
|
||||
def _setup_server(self) -> None:
|
||||
"""Flushes server state when new client connects."""
|
||||
# only running inference on the latest observation received by the server
|
||||
self.observation_queue = Queue(maxsize=1)
|
||||
|
||||
def Ready(self, request, context): # noqa: N802
|
||||
self._setup_server()
|
||||
print("Client connected and ready")
|
||||
|
||||
return async_inference_pb2.Empty()
|
||||
|
||||
def SendObservations(self, request_iterator, context):
|
||||
|
||||
def SendObservations(self, request_iterator, context): # noqa: N802
|
||||
"""Receive observations from the robot client"""
|
||||
client_id = context.peer()
|
||||
print(f"Receiving observations from {client_id}")
|
||||
|
||||
for observation in request_iterator:
|
||||
print(
|
||||
"Received observation: ",
|
||||
f"state={observation.transfer_state}, "
|
||||
f"data size={len(observation.data)} bytes"
|
||||
)
|
||||
# print("Number of observations in queue: ", self.observation_queue.qsize())
|
||||
|
||||
with self.lock:
|
||||
self.observation = observation
|
||||
self.observations.append(observation)
|
||||
|
||||
data = np.frombuffer(
|
||||
self.observation.data,
|
||||
# observation data are stored as float32
|
||||
dtype=np.float32
|
||||
for observation in request_iterator:
|
||||
# Increment observation timestep counter for each new observation
|
||||
observation_data = np.frombuffer(observation.data, dtype=np.float32)
|
||||
observation_timestep = observation_data[0]
|
||||
observation_content = observation_data[1:]
|
||||
|
||||
# If queue is full, get the old observation to make room
|
||||
if self.observation_queue.full():
|
||||
# pops from queue
|
||||
_ = self.observation_queue.get_nowait()
|
||||
|
||||
# Now put the new observation (never blocks as queue is non-full here)
|
||||
self.observation_queue.put(
|
||||
TimedObservation(
|
||||
timestep=int(observation_timestep),
|
||||
observation=observation_content,
|
||||
transfer_state=observation.transfer_state,
|
||||
)
|
||||
)
|
||||
print(f"Current observation data: {data}")
|
||||
|
||||
print("Received observation no: ", observation_timestep)
|
||||
|
||||
return async_inference_pb2.Empty()
|
||||
|
||||
def StreamActions(self, request, context):
|
||||
def StreamActions(self, request, context): # noqa: N802
|
||||
"""Stream actions to the robot client"""
|
||||
client_id = context.peer()
|
||||
# client_id = context.peer()
|
||||
# print(f"Client {client_id} connected for action streaming")
|
||||
|
||||
with self.lock:
|
||||
yield self._generate_and_queue_action(self.observation)
|
||||
|
||||
|
||||
# Generate action based on the most recent observation and its timestep
|
||||
obs = self.observation_queue.get()
|
||||
print("Running inference for timestep: ", obs.get_timestep())
|
||||
|
||||
if obs:
|
||||
yield self._predict_action_chunk(obs)
|
||||
|
||||
else:
|
||||
print("No observation in queue yet!")
|
||||
time.sleep(idle_wait)
|
||||
|
||||
return async_inference_pb2.Empty()
|
||||
|
||||
def _predict_and_queue_action(self, observation):
|
||||
@@ -75,36 +101,81 @@ class PolicyServer(async_inference_pb2_grpc.AsyncInferenceServicer):
|
||||
# TODO: Queue the action to be sent to the robot client
|
||||
raise NotImplementedError("Not implemented")
|
||||
|
||||
def _generate_and_queue_action(self, observation):
|
||||
"""Generate a buffer of actions based on the observation (dummy logic).
|
||||
Mainly used for testing purposes"""
|
||||
time.sleep(2)
|
||||
# Debinarize observation data
|
||||
data = np.frombuffer(
|
||||
observation.data,
|
||||
dtype=np.float32
|
||||
)
|
||||
# dummy transform on the observation data
|
||||
action_content = (data * 2).sum().item()
|
||||
action_data = (action_content * np.ones(
|
||||
shape=(10, 5), # 10 5-dimensional actions
|
||||
dtype=np.float32
|
||||
)).tobytes()
|
||||
def _stream_action_chunks_from_dataset(self) -> Generator[List[torch.Tensor], None, None]:
|
||||
"""Stream chunks of actions from a prerecorded dataset.
|
||||
|
||||
action = async_inference_pb2.Action(
|
||||
transfer_state=observation.transfer_state,
|
||||
data=action_data
|
||||
Returns:
|
||||
Generator that yields chunks of actions from the dataset
|
||||
"""
|
||||
dataset = load_dataset("fracapuano/so100_test", split="train").with_format("torch")
|
||||
|
||||
# 1. Select the action column only, where you will find tensors with 6 elements
|
||||
actions = dataset["action"]
|
||||
action_indices = torch.arange(len(actions))
|
||||
|
||||
actions_per_chunk = 20
|
||||
actions_overlap = 10
|
||||
|
||||
# 2. Chunk the iterable of tensors into chunks with 10 elements each
|
||||
# sending only first element for debugging
|
||||
indices_chunks = action_indices.unfold(0, actions_per_chunk, actions_per_chunk - actions_overlap)
|
||||
|
||||
for idx_chunk in indices_chunks:
|
||||
yield actions[idx_chunk[0] : idx_chunk[-1] + 1, :]
|
||||
|
||||
# Non overlapping action chunks
|
||||
# actions_chunks = torch.split(actions, 20)
|
||||
# for action_chunk in actions_chunks:
|
||||
# yield action_chunk
|
||||
|
||||
def _predict_action_chunk(self, observation: TimedObservation):
|
||||
"""Dummy function for predicting action chunk given observation.
|
||||
|
||||
Instead of computing actions on-the-fly, this method streams
|
||||
actions from a prerecorded dataset.
|
||||
"""
|
||||
transfer_state = 0 if not observation else observation.transfer_state
|
||||
|
||||
# Get chunk of actions from the generator
|
||||
actions_chunk = next(self.action_generator)
|
||||
|
||||
# Convert the chunk of actions to a single contiguous numpy array
|
||||
# For the so100 dataset, each action in the chunk is a tensor with 6 elements
|
||||
actions_array = actions_chunk.numpy()
|
||||
|
||||
# Create timesteps starting from the observation timestep
|
||||
# Each action in the chunk gets a timestep starting from observation_timestep
|
||||
# This indicates that the first action corresponds to the current observation,
|
||||
# and subsequent actions are for future timesteps (and predicted observations!)
|
||||
|
||||
timesteps = (
|
||||
np.arange(observation.timestep, observation.timestep + len(actions_array))
|
||||
.reshape(-1, 1)
|
||||
.astype(np.float32)
|
||||
)
|
||||
|
||||
# Create a combined array with timesteps and actions
|
||||
# First column is the timestep, remaining columns are the action values
|
||||
combined_array = np.hstack((timesteps, actions_array))
|
||||
|
||||
# Convert the numpy array to bytes for transmission
|
||||
action_data = combined_array.astype(np.float32).tobytes()
|
||||
|
||||
# Create and return the Action message
|
||||
action = async_inference_pb2.Action(transfer_state=transfer_state, data=action_data)
|
||||
|
||||
time.sleep(inference_latency) # slow action generation, emulates inference time
|
||||
|
||||
return action
|
||||
|
||||
|
||||
def serve():
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
|
||||
async_inference_pb2_grpc.add_AsyncInferenceServicer_to_server(PolicyServer(), server)
|
||||
server.add_insecure_port('[::]:50051')
|
||||
server.add_insecure_port("[::]:50051")
|
||||
server.start()
|
||||
print("PolicyServer started on port 50051")
|
||||
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(86400) # Sleep for a day, or until interrupted
|
||||
@@ -112,5 +183,6 @@ def serve():
|
||||
server.stop(0)
|
||||
print("Server stopped")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
serve()
|
||||
|
||||
Reference in New Issue
Block a user