Remove deprecated scripts & tests

This commit is contained in:
Simon Alibert
2025-05-08 18:08:38 +02:00
parent cb9cac6a1b
commit dd3e305164
7 changed files with 2 additions and 1694 deletions

View File

@@ -65,11 +65,6 @@ def make_robot_from_config(config: RobotConfig) -> Robot:
raise ValueError(config.type)
def make_robot(robot_type: str, **kwargs) -> Robot:
config = make_robot_config(robot_type, **kwargs)
return make_robot_from_config(config)
def ensure_safe_goal_position(
goal_present_pos: dict[str, tuple[float, float]], max_relative_target: float | dict[float]
) -> dict[str, float]:

View File

@@ -1,437 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities to control a robot.
Useful to record a dataset, replay a recorded episode, run the policy on your robot
and record an evaluation dataset, and to recalibrate your robot if needed.
Examples of usage:
- Recalibrate your robot:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=calibrate
```
- Unlimited teleoperation at highest frequency (~200 Hz is expected), to exit with CTRL+C:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--robot.cameras='{}' \
--control.type=teleoperate
# Add the cameras from the robot definition to visualize them:
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=teleoperate
```
- Unlimited teleoperation at a limited frequency of 30 Hz, to simulate data recording frequency:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=teleoperate \
--control.fps=30
```
- Record one episode in order to test replay:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=$USER/koch_test \
--control.num_episodes=1 \
--control.push_to_hub=True
```
- Visualize dataset:
```bash
python lerobot/scripts/visualize_dataset.py \
--repo-id $USER/koch_test \
--episode-index 0
```
- Replay this test episode:
```bash
python lerobot/scripts/control_robot.py replay \
--robot.type=so100 \
--control.type=replay \
--control.fps=30 \
--control.repo_id=$USER/koch_test \
--control.episode=0
```
- Record a full dataset in order to train a policy, with 2 seconds of warmup,
30 seconds of recording for each episode, and 10 seconds to reset the environment in between episodes:
```bash
python lerobot/scripts/control_robot.py record \
--robot.type=so100 \
--control.type=record \
--control.fps 30 \
--control.repo_id=$USER/koch_pick_place_lego \
--control.num_episodes=50 \
--control.warmup_time_s=2 \
--control.episode_time_s=30 \
--control.reset_time_s=10
```
- For remote controlled robots like LeKiwi, run this script on the robot edge device (e.g. RaspBerryPi):
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=remote_robot
```
**NOTE**: You can use your keyboard to control data recording flow.
- Tap right arrow key '->' to early exit while recording an episode and go to resseting the environment.
- Tap right arrow key '->' to early exit while resetting the environment and got to recording the next episode.
- Tap left arrow key '<-' to early exit and re-record the current episode.
- Tap escape key 'esc' to stop the data recording.
This might require a sudo permission to allow your terminal to monitor keyboard events.
**NOTE**: You can resume/continue data recording by running the same data recording command and adding `--control.resume=true`.
- Train on this dataset with the ACT policy:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/koch_pick_place_lego \
--policy.type=act \
--output_dir=outputs/train/act_koch_pick_place_lego \
--job_name=act_koch_pick_place_lego \
--device=cuda \
--wandb.enable=true
```
- Run the pretrained policy on the robot:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=$USER/eval_act_koch_pick_place_lego \
--control.num_episodes=10 \
--control.warmup_time_s=2 \
--control.episode_time_s=30 \
--control.reset_time_s=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_koch_pick_place_lego/checkpoints/080000/pretrained_model
```
"""
import logging
import os
import time
from dataclasses import asdict
from pprint import pformat
import rerun as rr
# from safetensors.torch import load_file, save_file
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.policies.factory import make_policy
from lerobot.common.robots.utils import Robot, make_robot_from_config
from lerobot.common.utils.control_utils import (
control_loop,
init_keyboard_listener,
is_headless,
log_control_info,
record_episode,
reset_environment,
sanity_check_dataset_name,
sanity_check_dataset_robot_compatibility,
stop_recording,
warmup_record,
)
from lerobot.common.utils.robot_utils import busy_wait, safe_disconnect
from lerobot.common.utils.utils import has_method, init_logging, log_say
from lerobot.configs import parser
from lerobot.configs.control import (
CalibrateControlConfig,
ControlConfig,
ControlPipelineConfig,
RecordControlConfig,
RemoteRobotConfig,
ReplayControlConfig,
TeleoperateControlConfig,
)
########################################################################################
# Control modes
########################################################################################
@safe_disconnect
def calibrate(robot: Robot, cfg: CalibrateControlConfig):
# TODO(aliberts): move this code in robots' classes
if robot.robot_type.startswith("stretch"):
if not robot.is_connected:
robot.connect()
if not robot.is_homed():
robot.home()
return
arms = robot.available_arms if cfg.arms is None else cfg.arms
unknown_arms = [arm_id for arm_id in arms if arm_id not in robot.available_arms]
available_arms_str = " ".join(robot.available_arms)
unknown_arms_str = " ".join(unknown_arms)
if arms is None or len(arms) == 0:
raise ValueError(
"No arm provided. Use `--arms` as argument with one or more available arms.\n"
f"For instance, to recalibrate all arms add: `--arms {available_arms_str}`"
)
if len(unknown_arms) > 0:
raise ValueError(
f"Unknown arms provided ('{unknown_arms_str}'). Available arms are `{available_arms_str}`."
)
for arm_id in arms:
arm_calib_path = robot.calibration_dir / f"{arm_id}.json"
if arm_calib_path.exists():
print(f"Removing '{arm_calib_path}'")
arm_calib_path.unlink()
else:
print(f"Calibration file not found '{arm_calib_path}'")
if robot.is_connected:
robot.disconnect()
if robot.robot_type.startswith("lekiwi") and "main_follower" in arms:
print("Calibrating only the lekiwi follower arm 'main_follower'...")
robot.calibrate_follower()
return
if robot.robot_type.startswith("lekiwi") and "main_leader" in arms:
print("Calibrating only the lekiwi leader arm 'main_leader'...")
robot.calibrate_leader()
return
# Calling `connect` automatically runs calibration
# when the calibration file is missing
robot.connect()
robot.disconnect()
print("Calibration is done! You can now teleoperate and record datasets!")
@safe_disconnect
def teleoperate(robot: Robot, cfg: TeleoperateControlConfig):
control_loop(
robot,
control_time_s=cfg.teleop_time_s,
fps=cfg.fps,
teleoperate=True,
display_data=cfg.display_data,
)
@safe_disconnect
def record(
robot: Robot,
cfg: RecordControlConfig,
) -> LeRobotDataset:
# TODO(rcadene): Add option to record logs
if cfg.resume:
dataset = LeRobotDataset(
cfg.repo_id,
root=cfg.root,
)
if len(robot.cameras) > 0:
dataset.start_image_writer(
num_processes=cfg.num_image_writer_processes,
num_threads=cfg.num_image_writer_threads_per_camera * len(robot.cameras),
)
sanity_check_dataset_robot_compatibility(dataset, robot, cfg.fps, cfg.video)
else:
# Create empty dataset or load existing saved episodes
sanity_check_dataset_name(cfg.repo_id, cfg.policy)
dataset = LeRobotDataset.create(
cfg.repo_id,
cfg.fps,
root=cfg.root,
robot=robot,
use_videos=cfg.video,
image_writer_processes=cfg.num_image_writer_processes,
image_writer_threads=cfg.num_image_writer_threads_per_camera * len(robot.cameras),
)
# Load pretrained policy
policy = None if cfg.policy is None else make_policy(cfg.policy, ds_meta=dataset.meta)
if not robot.is_connected:
robot.connect()
listener, events = init_keyboard_listener()
# Execute a few seconds without recording to:
# 1. teleoperate the robot to move it in starting position if no policy provided,
# 2. give times to the robot devices to connect and start synchronizing,
# 3. place the cameras windows on screen
enable_teleoperation = policy is None
log_say("Warmup record", cfg.play_sounds)
warmup_record(robot, events, enable_teleoperation, cfg.warmup_time_s, cfg.display_data, cfg.fps)
if has_method(robot, "teleop_safety_stop"):
robot.teleop_safety_stop()
recorded_episodes = 0
while True:
if recorded_episodes >= cfg.num_episodes:
break
log_say(f"Recording episode {dataset.num_episodes}", cfg.play_sounds)
record_episode(
robot=robot,
dataset=dataset,
events=events,
episode_time_s=cfg.episode_time_s,
display_data=cfg.display_data,
policy=policy,
fps=cfg.fps,
single_task=cfg.single_task,
)
# Execute a few seconds without recording to give time to manually reset the environment
# Current code logic doesn't allow to teleoperate during this time.
# TODO(rcadene): add an option to enable teleoperation during reset
# Skip reset for the last episode to be recorded
if not events["stop_recording"] and (
(recorded_episodes < cfg.num_episodes - 1) or events["rerecord_episode"]
):
log_say("Reset the environment", cfg.play_sounds)
reset_environment(robot, events, cfg.reset_time_s, cfg.fps)
if events["rerecord_episode"]:
log_say("Re-record episode", cfg.play_sounds)
events["rerecord_episode"] = False
events["exit_early"] = False
dataset.clear_episode_buffer()
continue
dataset.save_episode()
recorded_episodes += 1
if events["stop_recording"]:
break
log_say("Stop recording", cfg.play_sounds, blocking=True)
stop_recording(robot, listener, cfg.display_data)
if cfg.push_to_hub:
dataset.push_to_hub(tags=cfg.tags, private=cfg.private)
log_say("Exiting", cfg.play_sounds)
return dataset
@safe_disconnect
def replay(
robot: Robot,
cfg: ReplayControlConfig,
):
# TODO(rcadene, aliberts): refactor with control_loop, once `dataset` is an instance of LeRobotDataset
# TODO(rcadene): Add option to record logs
dataset = LeRobotDataset(cfg.repo_id, root=cfg.root, episodes=[cfg.episode])
actions = dataset.hf_dataset.select_columns("action")
if not robot.is_connected:
robot.connect()
log_say("Replaying episode", cfg.play_sounds, blocking=True)
for idx in range(dataset.num_frames):
start_episode_t = time.perf_counter()
action = actions[idx]["action"]
robot.send_action(action)
dt_s = time.perf_counter() - start_episode_t
busy_wait(1 / cfg.fps - dt_s)
dt_s = time.perf_counter() - start_episode_t
log_control_info(robot, dt_s, fps=cfg.fps)
def _init_rerun(control_config: ControlConfig, session_name: str = "lerobot_control_loop") -> None:
"""Initializes the Rerun SDK for visualizing the control loop.
Args:
control_config: Configuration determining data display and robot type.
session_name: Rerun session name. Defaults to "lerobot_control_loop".
Raises:
ValueError: If viewer IP is missing for non-remote configurations with display enabled.
"""
if (control_config.display_data and not is_headless()) or (
control_config.display_data and isinstance(control_config, RemoteRobotConfig)
):
# Configure Rerun flush batch size default to 8KB if not set
batch_size = os.getenv("RERUN_FLUSH_NUM_BYTES", "8000")
os.environ["RERUN_FLUSH_NUM_BYTES"] = batch_size
# Initialize Rerun based on configuration
rr.init(session_name)
if isinstance(control_config, RemoteRobotConfig):
viewer_ip = control_config.viewer_ip
viewer_port = control_config.viewer_port
if not viewer_ip or not viewer_port:
raise ValueError(
"Viewer IP & Port are required for remote config. Set via config file/CLI or disable control_config.display_data."
)
logging.info(f"Connecting to viewer at {viewer_ip}:{viewer_port}")
rr.connect_tcp(f"{viewer_ip}:{viewer_port}")
else:
# Get memory limit for rerun viewer parameters
memory_limit = os.getenv("LEROBOT_RERUN_MEMORY_LIMIT", "10%")
rr.spawn(memory_limit=memory_limit)
@parser.wrap()
def control_robot(cfg: ControlPipelineConfig):
init_logging()
logging.info(pformat(asdict(cfg)))
robot = make_robot_from_config(cfg.robot)
# TODO(Steven): Blueprint for fixed window size
if isinstance(cfg.control, CalibrateControlConfig):
calibrate(robot, cfg.control)
elif isinstance(cfg.control, TeleoperateControlConfig):
_init_rerun(control_config=cfg.control, session_name="lerobot_control_loop_teleop")
teleoperate(robot, cfg.control)
elif isinstance(cfg.control, RecordControlConfig):
_init_rerun(control_config=cfg.control, session_name="lerobot_control_loop_record")
record(robot, cfg.control)
elif isinstance(cfg.control, ReplayControlConfig):
replay(robot, cfg.control)
elif isinstance(cfg.control, RemoteRobotConfig):
from lerobot.common.robots.lekiwi.old_lekiwi_remote import run_lekiwi
_init_rerun(control_config=cfg.control, session_name="lerobot_control_loop_remote")
run_lekiwi(cfg.robot)
if robot.is_connected:
# Disconnect manually to avoid a "Core dump" during process
# termination due to camera threads not properly exiting.
robot.disconnect()
if __name__ == "__main__":
control_robot()

View File

@@ -1,561 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities to control a robot in simulation.
Useful to record a dataset, replay a recorded episode and record an evaluation dataset.
Examples of usage:
- Unlimited teleoperation at a limited frequency of 30 Hz, to simulate data recording frequency.
You can modify this value depending on how fast your simulation can run:
```bash
python lerobot/scripts/control_robot.py teleoperate \
--fps 30 \
--robot-path lerobot/configs/robot/your_robot_config.yaml \
--sim-config lerobot/configs/env/your_sim_config.yaml
```
- Record one episode in order to test replay:
```bash
python lerobot/scripts/control_sim_robot.py record \
--robot-path lerobot/configs/robot/your_robot_config.yaml \
--sim-config lerobot/configs/env/your_sim_config.yaml \
--fps 30 \
--repo-id $USER/robot_sim_test \
--num-episodes 1 \
--run-compute-stats 0
```
Enable the --push-to-hub 1 to push the recorded dataset to the huggingface hub.
- Visualize dataset:
```bash
python lerobot/scripts/visualize_dataset.py \
--repo-id $USER/robot_sim_test \
--episode-index 0
```
- Replay a sequence of test episodes:
```bash
python lerobot/scripts/control_sim_robot.py replay \
--robot-path lerobot/configs/robot/your_robot_config.yaml \
--sim-config lerobot/configs/env/your_sim_config.yaml \
--fps 30 \
--repo-id $USER/robot_sim_test \
--episode 0
```
Note: The seed is saved, therefore, during replay we can load the same environment state as the one during collection.
- Record a full dataset in order to train a policy,
30 seconds of recording for each episode, and 10 seconds to reset the environment in between episodes:
```bash
python lerobot/scripts/control_sim_robot.py record \
--robot-path lerobot/configs/robot/your_robot_config.yaml \
--sim-config lerobot/configs/env/your_sim_config.yaml \
--fps 30 \
--repo-id $USER/robot_sim_test \
--num-episodes 50 \
--episode-time-s 30 \
```
**NOTE**: You can use your keyboard to control data recording flow.
- Tap right arrow key '->' to early exit while recording an episode and go to resetting the environment.
- Tap right arrow key '->' to early exit while resetting the environment and got to recording the next episode.
- Tap left arrow key '<-' to early exit and re-record the current episode.
- Tap escape key 'esc' to stop the data recording.
This might require a sudo permission to allow your terminal to monitor keyboard events.
**NOTE**: You can resume/continue data recording by running the same data recording command twice.
"""
import argparse
import importlib
import logging
import time
from pathlib import Path
import cv2
import gymnasium as gym
import numpy as np
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.robots.utils import Robot, make_robot
from lerobot.common.utils.control_utils import (
init_keyboard_listener,
init_policy,
is_headless,
log_control_info,
predict_action,
sanity_check_dataset_name,
sanity_check_dataset_robot_compatibility,
stop_recording,
)
from lerobot.common.utils.robot_utils import busy_wait
from lerobot.common.utils.utils import init_hydra_config, init_logging, log_say
raise NotImplementedError("This script is currently deactivated")
DEFAULT_FEATURES = {
"next.reward": {
"dtype": "float32",
"shape": (1,),
"names": None,
},
"next.success": {
"dtype": "bool",
"shape": (1,),
"names": None,
},
"seed": {
"dtype": "int64",
"shape": (1,),
"names": None,
},
"timestamp": {
"dtype": "float32",
"shape": (1,),
"names": None,
},
}
########################################################################################
# Utilities
########################################################################################
def none_or_int(value):
if value == "None":
return None
return int(value)
def init_sim_calibration(robot, cfg):
# Constants necessary for transforming the joint pos of the real robot to the sim
# depending on the robot description used in that sim.
start_pos = np.array(robot.leader_arms.main.calibration["start_pos"])
axis_directions = np.array(cfg.get("axis_directions", [1]))
offsets = np.array(cfg.get("offsets", [0])) * np.pi
return {"start_pos": start_pos, "axis_directions": axis_directions, "offsets": offsets}
def real_positions_to_sim(real_positions, axis_directions, start_pos, offsets):
"""Counts - starting position -> radians -> align axes -> offset"""
return axis_directions * (real_positions - start_pos) * 2.0 * np.pi / 4096 + offsets
########################################################################################
# Control modes
########################################################################################
def teleoperate(env, robot: Robot, process_action_fn, teleop_time_s=None):
env = env()
env.reset()
start_teleop_t = time.perf_counter()
while True:
leader_pos = robot.leader_arms.main.read("Present_Position")
action = process_action_fn(leader_pos)
env.step(np.expand_dims(action, 0))
if teleop_time_s is not None and time.perf_counter() - start_teleop_t > teleop_time_s:
print("Teleoperation processes finished.")
break
def record(
env,
robot: Robot,
process_action_from_leader,
root: Path,
repo_id: str,
task: str,
fps: int | None = None,
tags: list[str] | None = None,
pretrained_policy_name_or_path: str = None,
policy_overrides: bool | None = None,
episode_time_s: int = 30,
num_episodes: int = 50,
video: bool = True,
push_to_hub: bool = True,
num_image_writer_processes: int = 0,
num_image_writer_threads_per_camera: int = 4,
display_cameras: bool = False,
play_sounds: bool = True,
resume: bool = False,
local_files_only: bool = False,
run_compute_stats: bool = True,
) -> LeRobotDataset:
# Load pretrained policy
policy = None
if pretrained_policy_name_or_path is not None:
policy, policy_fps, device, use_amp = init_policy(pretrained_policy_name_or_path, policy_overrides)
if fps is None:
fps = policy_fps
logging.warning(f"No fps provided, so using the fps from policy config ({policy_fps}).")
if policy is None and process_action_from_leader is None:
raise ValueError("Either policy or process_action_fn has to be set to enable control in sim.")
# initialize listener before sim env
listener, events = init_keyboard_listener()
# create sim env
env = env()
# Create empty dataset or load existing saved episodes
num_cameras = sum([1 if "image" in key else 0 for key in env.observation_space])
# get image keys
image_keys = [key for key in env.observation_space if "image" in key]
state_keys_dict = env_cfg.state_keys
if resume:
dataset = LeRobotDataset(
repo_id,
root=root,
local_files_only=local_files_only,
)
dataset.start_image_writer(
num_processes=num_image_writer_processes,
num_threads=num_image_writer_threads_per_camera * num_cameras,
)
sanity_check_dataset_robot_compatibility(dataset, robot, fps, video)
else:
features = DEFAULT_FEATURES
# add image keys to features
for key in image_keys:
shape = env.observation_space[key].shape
if not key.startswith("observation.image."):
key = "observation.image." + key
features[key] = {"dtype": "video", "names": ["channels", "height", "width"], "shape": shape}
for key, obs_key in state_keys_dict.items():
features[key] = {
"dtype": "float32",
"names": None,
"shape": env.observation_space[obs_key].shape,
}
features["action"] = {"dtype": "float32", "shape": env.action_space.shape, "names": None}
# Create empty dataset or load existing saved episodes
sanity_check_dataset_name(repo_id, policy)
dataset = LeRobotDataset.create(
repo_id,
fps,
root=root,
features=features,
use_videos=video,
image_writer_processes=num_image_writer_processes,
image_writer_threads=num_image_writer_threads_per_camera * num_cameras,
)
recorded_episodes = 0
while True:
log_say(f"Recording episode {dataset.num_episodes}", play_sounds)
if events is None:
events = {"exit_early": False}
if episode_time_s is None:
episode_time_s = float("inf")
timestamp = 0
start_episode_t = time.perf_counter()
seed = np.random.randint(0, 1e5)
observation, info = env.reset(seed=seed)
while timestamp < episode_time_s:
start_loop_t = time.perf_counter()
if policy is not None:
action = predict_action(observation, policy, device, use_amp)
else:
leader_pos = robot.leader_arms.main.read("Present_Position")
action = process_action_from_leader(leader_pos)
observation, reward, terminated, _, info = env.step(action)
success = info.get("is_success", False)
env_timestamp = info.get("timestamp", dataset.episode_buffer["size"] / fps)
frame = {
"action": torch.from_numpy(action),
"next.reward": reward,
"next.success": success,
"seed": seed,
"timestamp": env_timestamp,
}
for key in image_keys:
if not key.startswith("observation.image"):
frame["observation.image." + key] = observation[key]
else:
frame[key] = observation[key]
for key, obs_key in state_keys_dict.items():
frame[key] = torch.from_numpy(observation[obs_key])
dataset.add_frame(frame)
if display_cameras and not is_headless():
for key in image_keys:
cv2.imshow(key, cv2.cvtColor(observation[key], cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
if fps is not None:
dt_s = time.perf_counter() - start_loop_t
busy_wait(1 / fps - dt_s)
dt_s = time.perf_counter() - start_loop_t
log_control_info(robot, dt_s, fps=fps)
timestamp = time.perf_counter() - start_episode_t
if events["exit_early"] or terminated:
events["exit_early"] = False
break
if events["rerecord_episode"]:
log_say("Re-record episode", play_sounds)
events["rerecord_episode"] = False
events["exit_early"] = False
dataset.clear_episode_buffer()
continue
dataset.save_episode(task=task)
recorded_episodes += 1
if events["stop_recording"] or recorded_episodes >= num_episodes:
break
else:
logging.info("Waiting for a few seconds before starting next episode recording...")
busy_wait(3)
log_say("Stop recording", play_sounds, blocking=True)
stop_recording(robot, listener, display_cameras)
if run_compute_stats:
logging.info("Computing dataset statistics")
dataset.consolidate(run_compute_stats)
if push_to_hub:
dataset.push_to_hub(tags=tags)
log_say("Exiting", play_sounds)
return dataset
def replay(
env, root: Path, repo_id: str, episode: int, fps: int | None = None, local_files_only: bool = True
):
env = env()
local_dir = Path(root) / repo_id
if not local_dir.exists():
raise ValueError(local_dir)
dataset = LeRobotDataset(repo_id, root=root, local_files_only=local_files_only)
items = dataset.hf_dataset.select_columns("action")
seeds = dataset.hf_dataset.select_columns("seed")["seed"]
from_idx = dataset.episode_data_index["from"][episode].item()
to_idx = dataset.episode_data_index["to"][episode].item()
env.reset(seed=seeds[from_idx].item())
logging.info("Replaying episode")
log_say("Replaying episode", play_sounds=True)
for idx in range(from_idx, to_idx):
start_episode_t = time.perf_counter()
action = items[idx]["action"]
env.step(action.unsqueeze(0).numpy())
dt_s = time.perf_counter() - start_episode_t
busy_wait(1 / fps - dt_s)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest="mode", required=True)
# Set common options for all the subparsers
base_parser = argparse.ArgumentParser(add_help=False)
base_parser.add_argument(
"--robot-path",
type=str,
default="lerobot/configs/robot/koch.yaml",
help="Path to robot yaml file used to instantiate the robot using `make_robot` factory function.",
)
base_parser.add_argument(
"--sim-config",
help="Path to a yaml config you want to use for initializing a sim environment based on gym ",
)
parser_record = subparsers.add_parser("teleoperate", parents=[base_parser])
parser_record = subparsers.add_parser("record", parents=[base_parser])
parser_record.add_argument(
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
)
parser_record.add_argument(
"--root",
type=Path,
default=None,
help="Root directory where the dataset will be stored locally at '{root}/{repo_id}' (e.g. 'data/hf_username/dataset_name').",
)
parser_record.add_argument(
"--repo-id",
type=str,
default="lerobot/test",
help="Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).",
)
parser_record.add_argument(
"--episode-time-s",
type=int,
default=60,
help="Number of seconds for data recording for each episode.",
)
parser_record.add_argument(
"--task",
type=str,
required=True,
help="A description of the task preformed during recording that can be used as a language instruction.",
)
parser_record.add_argument("--num-episodes", type=int, default=50, help="Number of episodes to record.")
parser_record.add_argument(
"--run-compute-stats",
type=int,
default=1,
help="By default, run the computation of the data statistics at the end of data collection. Compute intensive and not required to just replay an episode.",
)
parser_record.add_argument(
"--push-to-hub",
type=int,
default=1,
help="Upload dataset to Hugging Face hub.",
)
parser_record.add_argument(
"--tags",
type=str,
nargs="*",
help="Add tags to your dataset on the hub.",
)
parser_record.add_argument(
"--num-image-writer-processes",
type=int,
default=0,
help=(
"Number of subprocesses handling the saving of frames as PNG. Set to 0 to use threads only; "
"set to ≥1 to use subprocesses, each using threads to write images. The best number of processes "
"and threads depends on your system. We recommend 4 threads per camera with 0 processes. "
"If fps is unstable, adjust the thread count. If still unstable, try using 1 or more subprocesses."
),
)
parser_record.add_argument(
"--num-image-writer-threads-per-camera",
type=int,
default=4,
help=(
"Number of threads writing the frames as png images on disk, per camera. "
"Too much threads might cause unstable teleoperation fps due to main thread being blocked. "
"Not enough threads might cause low camera fps."
),
)
parser_record.add_argument(
"--display-cameras",
type=int,
default=0,
help="Visualize image observations with opencv.",
)
parser_record.add_argument(
"--resume",
type=int,
default=0,
help="Resume recording on an existing dataset.",
)
parser_replay = subparsers.add_parser("replay", parents=[base_parser])
parser_replay.add_argument(
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
)
parser_replay.add_argument(
"--root",
type=Path,
default=None,
help="Root directory where the dataset will be stored locally (e.g. 'data/hf_username/dataset_name'). By default, stored in cache folder.",
)
parser_replay.add_argument(
"--repo-id",
type=str,
default="lerobot/test",
help="Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).",
)
parser_replay.add_argument("--episode", type=int, default=0, help="Index of the episodes to replay.")
args = parser.parse_args()
init_logging()
control_mode = args.mode
robot_path = args.robot_path
env_config_path = args.sim_config
kwargs = vars(args)
del kwargs["mode"]
del kwargs["robot_path"]
del kwargs["sim_config"]
# make gym env
env_cfg = init_hydra_config(env_config_path)
importlib.import_module(f"gym_{env_cfg.env.type}")
def env_constructor():
return gym.make(env_cfg.env.handle, disable_env_checker=True, **env_cfg.env.gym)
robot = None
process_leader_actions_fn = None
if control_mode in ["teleoperate", "record"]:
# make robot
robot_overrides = ["~cameras", "~follower_arms"]
# TODO(rcadene): remove
robot_cfg = init_hydra_config(robot_path, robot_overrides)
robot = make_robot(robot_cfg)
robot.connect()
calib_kwgs = init_sim_calibration(robot, env_cfg.calibration)
def process_leader_actions_fn(action):
return real_positions_to_sim(action, **calib_kwgs)
robot.leader_arms.main.calibration = None
if control_mode == "teleoperate":
teleoperate(env_constructor, robot, process_leader_actions_fn)
elif control_mode == "record":
record(env_constructor, robot, process_leader_actions_fn, **kwargs)
elif control_mode == "replay":
replay(env_constructor, **kwargs)
else:
raise ValueError(
f"Invalid control mode: '{control_mode}', only valid modes are teleoperate, record and replay."
)
if robot and robot.is_connected:
# Disconnect manually to avoid a "Core dump" during process
# termination due to camera threads not properly exiting.
robot.disconnect()

View File

@@ -19,9 +19,8 @@ import traceback
import pytest
from serial import SerialException
from lerobot import available_cameras, available_motors, available_robots
from lerobot.common.robots.utils import make_robot
from tests.utils import DEVICE, make_camera, make_motors_bus
from lerobot import available_cameras
from tests.utils import DEVICE, make_camera
# Import fixture modules as plugins
pytest_plugins = [
@@ -64,21 +63,11 @@ def _check_component_availability(component_type, available_components, make_com
return False
@pytest.fixture
def is_robot_available(robot_type):
return _check_component_availability(robot_type, available_robots, make_robot)
@pytest.fixture
def is_camera_available(camera_type):
return _check_component_availability(camera_type, available_cameras, make_camera)
@pytest.fixture
def is_motor_available(motor_type):
return _check_component_availability(motor_type, available_motors, make_motors_bus)
@pytest.fixture
def patch_builtins_input(monkeypatch):
def print_text(text=None):

View File

@@ -1,443 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tests for physical robots and their mocked versions.
If the physical robots are not connected to the computer, or not working,
the test will be skipped.
Example of running a specific test:
```bash
pytest -sx tests/test_control_robot.py::test_teleoperate
```
Example of running test on real robots connected to the computer:
```bash
pytest -sx 'tests/test_control_robot.py::test_teleoperate[koch-False]'
pytest -sx 'tests/test_control_robot.py::test_teleoperate[koch_bimanual-False]'
pytest -sx 'tests/test_control_robot.py::test_teleoperate[aloha-False]'
```
Example of running test on a mocked version of robots:
```bash
pytest -sx 'tests/test_control_robot.py::test_teleoperate[koch-True]'
pytest -sx 'tests/test_control_robot.py::test_teleoperate[koch_bimanual-True]'
pytest -sx 'tests/test_control_robot.py::test_teleoperate[aloha-True]'
```
"""
import multiprocessing
from unittest.mock import patch
import pytest
from lerobot.common.policies.act.configuration_act import ACTConfig
from lerobot.common.policies.factory import make_policy
from lerobot.configs.control import (
CalibrateControlConfig,
RecordControlConfig,
ReplayControlConfig,
TeleoperateControlConfig,
)
from lerobot.configs.policies import PreTrainedConfig
from lerobot.scripts.control_robot import calibrate, record, replay, teleoperate
from tests.robots.test_robots import make_robot
from tests.utils import TEST_ROBOT_TYPES, mock_calibration_dir, require_robot
@pytest.mark.parametrize("robot_type, mock", TEST_ROBOT_TYPES)
@require_robot
def test_teleoperate(tmp_path, request, robot_type, mock):
robot_kwargs = {"robot_type": robot_type, "mock": mock}
if mock and robot_type != "aloha":
request.getfixturevalue("patch_builtins_input")
# Create an empty calibration directory to trigger manual calibration
# and avoid writing calibration files in user .cache/calibration folder
calibration_dir = tmp_path / robot_type
mock_calibration_dir(calibration_dir)
robot_kwargs["calibration_dir"] = calibration_dir
else:
# Use the default .cache/calibration folder when mock=False
pass
robot = make_robot(**robot_kwargs)
teleoperate(robot, TeleoperateControlConfig(teleop_time_s=1))
teleoperate(robot, TeleoperateControlConfig(fps=30, teleop_time_s=1))
teleoperate(robot, TeleoperateControlConfig(fps=60, teleop_time_s=1))
del robot
@pytest.mark.parametrize("robot_type, mock", TEST_ROBOT_TYPES)
@require_robot
def test_calibrate(tmp_path, request, robot_type, mock):
robot_kwargs = {"robot_type": robot_type, "mock": mock}
if mock:
request.getfixturevalue("patch_builtins_input")
# Create an empty calibration directory to trigger manual calibration
calibration_dir = tmp_path / robot_type
robot_kwargs["calibration_dir"] = calibration_dir
robot = make_robot(**robot_kwargs)
calib_cfg = CalibrateControlConfig(arms=robot.available_arms)
calibrate(robot, calib_cfg)
del robot
@pytest.mark.parametrize("robot_type, mock", TEST_ROBOT_TYPES)
@require_robot
def test_record_without_cameras(tmp_path, request, robot_type, mock):
robot_kwargs = {"robot_type": robot_type, "mock": mock}
# Avoid using cameras
robot_kwargs["cameras"] = {}
if mock and robot_type != "aloha":
request.getfixturevalue("patch_builtins_input")
# Create an empty calibration directory to trigger manual calibration
# and avoid writing calibration files in user .cache/calibration folder
calibration_dir = tmp_path / robot_type
mock_calibration_dir(calibration_dir)
robot_kwargs["calibration_dir"] = calibration_dir
else:
# Use the default .cache/calibration folder when mock=False
pass
repo_id = "lerobot/debug"
root = tmp_path / "data" / repo_id
single_task = "Do something."
robot = make_robot(**robot_kwargs)
rec_cfg = RecordControlConfig(
repo_id=repo_id,
single_task=single_task,
root=root,
fps=30,
warmup_time_s=0.1,
episode_time_s=1,
reset_time_s=0.1,
num_episodes=2,
push_to_hub=False,
video=False,
play_sounds=False,
)
record(robot, rec_cfg)
@pytest.mark.parametrize("robot_type, mock", TEST_ROBOT_TYPES)
@require_robot
def test_record_and_replay_and_policy(tmp_path, request, robot_type, mock):
robot_kwargs = {"robot_type": robot_type, "mock": mock}
if mock and robot_type != "aloha":
request.getfixturevalue("patch_builtins_input")
# Create an empty calibration directory to trigger manual calibration
# and avoid writing calibration files in user .cache/calibration folder
calibration_dir = tmp_path / robot_type
mock_calibration_dir(calibration_dir)
robot_kwargs["calibration_dir"] = calibration_dir
else:
# Use the default .cache/calibration folder when mock=False
pass
repo_id = "lerobot_test/debug"
root = tmp_path / "data" / repo_id
single_task = "Do something."
robot = make_robot(**robot_kwargs)
rec_cfg = RecordControlConfig(
repo_id=repo_id,
single_task=single_task,
root=root,
fps=1,
warmup_time_s=0.1,
episode_time_s=1,
reset_time_s=0.1,
num_episodes=2,
push_to_hub=False,
# TODO(rcadene, aliberts): test video=True
video=False,
display_data=False,
play_sounds=False,
)
dataset = record(robot, rec_cfg)
assert dataset.meta.total_episodes == 2
assert len(dataset) == 2
replay_cfg = ReplayControlConfig(episode=0, fps=1, root=root, repo_id=repo_id, play_sounds=False)
replay(robot, replay_cfg)
policy_cfg = ACTConfig()
policy = make_policy(policy_cfg, ds_meta=dataset.meta)
out_dir = tmp_path / "logger"
pretrained_policy_path = out_dir / "checkpoints/last/pretrained_model"
policy.save_pretrained(pretrained_policy_path)
# In `examples/9_use_aloha.md`, we advise using `num_image_writer_processes=1`
# during inference, to reach constant fps, so we test this here.
if robot_type == "aloha":
num_image_writer_processes = 1
# `multiprocessing.set_start_method("spawn", force=True)` avoids a hanging issue
# before exiting pytest. However, it outputs the following error in the log:
# Traceback (most recent call last):
# File "<string>", line 1, in <module>
# File "/Users/rcadene/miniconda3/envs/lerobot/lib/python3.10/multiprocessing/spawn.py", line 116, in spawn_main
# exitcode = _main(fd, parent_sentinel)
# File "/Users/rcadene/miniconda3/envs/lerobot/lib/python3.10/multiprocessing/spawn.py", line 126, in _main
# self = reduction.pickle.load(from_parent)
# File "/Users/rcadene/miniconda3/envs/lerobot/lib/python3.10/multiprocessing/synchronize.py", line 110, in __setstate__
# self._semlock = _multiprocessing.SemLock._rebuild(*state)
# FileNotFoundError: [Errno 2] No such file or directory
# TODO(rcadene, aliberts): fix FileNotFoundError in multiprocessing
multiprocessing.set_start_method("spawn", force=True)
else:
num_image_writer_processes = 0
eval_repo_id = "lerobot/eval_debug"
eval_root = tmp_path / "data" / eval_repo_id
rec_eval_cfg = RecordControlConfig(
repo_id=eval_repo_id,
root=eval_root,
single_task=single_task,
fps=1,
warmup_time_s=0.1,
episode_time_s=1,
reset_time_s=0.1,
num_episodes=2,
push_to_hub=False,
video=False,
display_data=False,
play_sounds=False,
num_image_writer_processes=num_image_writer_processes,
)
rec_eval_cfg.policy = PreTrainedConfig.from_pretrained(pretrained_policy_path)
rec_eval_cfg.policy.pretrained_path = pretrained_policy_path
dataset = record(robot, rec_eval_cfg)
assert dataset.num_episodes == 2
assert len(dataset) == 2
del robot
@pytest.mark.parametrize("robot_type, mock", [("koch", True)])
@require_robot
def test_resume_record(tmp_path, request, robot_type, mock):
robot_kwargs = {"robot_type": robot_type, "mock": mock}
if mock and robot_type != "aloha":
request.getfixturevalue("patch_builtins_input")
# Create an empty calibration directory to trigger manual calibration
# and avoid writing calibration files in user .cache/calibration folder
calibration_dir = tmp_path / robot_type
mock_calibration_dir(calibration_dir)
robot_kwargs["calibration_dir"] = calibration_dir
else:
# Use the default .cache/calibration folder when mock=False
pass
robot = make_robot(**robot_kwargs)
repo_id = "lerobot/debug"
root = tmp_path / "data" / repo_id
single_task = "Do something."
rec_cfg = RecordControlConfig(
repo_id=repo_id,
root=root,
single_task=single_task,
fps=1,
warmup_time_s=0,
episode_time_s=1,
push_to_hub=False,
video=False,
display_data=False,
play_sounds=False,
num_episodes=1,
)
dataset = record(robot, rec_cfg)
assert len(dataset) == 1, f"`dataset` should contain 1 frame, not {len(dataset)}"
with pytest.raises(FileExistsError):
# Dataset already exists, but resume=False by default
record(robot, rec_cfg)
rec_cfg.resume = True
dataset = record(robot, rec_cfg)
assert len(dataset) == 2, f"`dataset` should contain 2 frames, not {len(dataset)}"
@pytest.mark.parametrize("robot_type, mock", [("koch", True)])
@require_robot
def test_record_with_event_rerecord_episode(tmp_path, request, robot_type, mock):
robot_kwargs = {"robot_type": robot_type, "mock": mock}
if mock and robot_type != "aloha":
request.getfixturevalue("patch_builtins_input")
# Create an empty calibration directory to trigger manual calibration
# and avoid writing calibration files in user .cache/calibration folder
calibration_dir = tmp_path / robot_type
mock_calibration_dir(calibration_dir)
robot_kwargs["calibration_dir"] = calibration_dir
else:
# Use the default .cache/calibration folder when mock=False
pass
robot = make_robot(**robot_kwargs)
with patch("lerobot.scripts.control_robot.init_keyboard_listener") as mock_listener:
mock_events = {}
mock_events["exit_early"] = True
mock_events["rerecord_episode"] = True
mock_events["stop_recording"] = False
mock_listener.return_value = (None, mock_events)
repo_id = "lerobot/debug"
root = tmp_path / "data" / repo_id
single_task = "Do something."
rec_cfg = RecordControlConfig(
repo_id=repo_id,
root=root,
single_task=single_task,
fps=1,
warmup_time_s=0,
episode_time_s=1,
num_episodes=1,
push_to_hub=False,
video=False,
display_data=False,
play_sounds=False,
)
dataset = record(robot, rec_cfg)
assert not mock_events["rerecord_episode"], "`rerecord_episode` wasn't properly reset to False"
assert not mock_events["exit_early"], "`exit_early` wasn't properly reset to False"
assert len(dataset) == 1, "`dataset` should contain only 1 frame"
@pytest.mark.parametrize("robot_type, mock", [("koch", True)])
@require_robot
def test_record_with_event_exit_early(tmp_path, request, robot_type, mock):
robot_kwargs = {"robot_type": robot_type, "mock": mock}
if mock:
request.getfixturevalue("patch_builtins_input")
# Create an empty calibration directory to trigger manual calibration
# and avoid writing calibration files in user .cache/calibration folder
calibration_dir = tmp_path / robot_type
mock_calibration_dir(calibration_dir)
robot_kwargs["calibration_dir"] = calibration_dir
else:
# Use the default .cache/calibration folder when mock=False
pass
robot = make_robot(**robot_kwargs)
with patch("lerobot.scripts.control_robot.init_keyboard_listener") as mock_listener:
mock_events = {}
mock_events["exit_early"] = True
mock_events["rerecord_episode"] = False
mock_events["stop_recording"] = False
mock_listener.return_value = (None, mock_events)
repo_id = "lerobot/debug"
root = tmp_path / "data" / repo_id
single_task = "Do something."
rec_cfg = RecordControlConfig(
repo_id=repo_id,
root=root,
single_task=single_task,
fps=2,
warmup_time_s=0,
episode_time_s=1,
num_episodes=1,
push_to_hub=False,
video=False,
display_data=False,
play_sounds=False,
)
dataset = record(robot, rec_cfg)
assert not mock_events["exit_early"], "`exit_early` wasn't properly reset to False"
assert len(dataset) == 1, "`dataset` should contain only 1 frame"
@pytest.mark.parametrize(
"robot_type, mock, num_image_writer_processes", [("koch", True, 0), ("koch", True, 1)]
)
@require_robot
def test_record_with_event_stop_recording(tmp_path, request, robot_type, mock, num_image_writer_processes):
robot_kwargs = {"robot_type": robot_type, "mock": mock}
if mock:
request.getfixturevalue("patch_builtins_input")
# Create an empty calibration directory to trigger manual calibration
# and avoid writing calibration files in user .cache/calibration folder
calibration_dir = tmp_path / robot_type
mock_calibration_dir(calibration_dir)
robot_kwargs["calibration_dir"] = calibration_dir
else:
# Use the default .cache/calibration folder when mock=False
pass
robot = make_robot(**robot_kwargs)
with patch("lerobot.scripts.control_robot.init_keyboard_listener") as mock_listener:
mock_events = {}
mock_events["exit_early"] = True
mock_events["rerecord_episode"] = False
mock_events["stop_recording"] = True
mock_listener.return_value = (None, mock_events)
repo_id = "lerobot/debug"
root = tmp_path / "data" / repo_id
single_task = "Do something."
rec_cfg = RecordControlConfig(
repo_id=repo_id,
root=root,
single_task=single_task,
fps=1,
warmup_time_s=0,
episode_time_s=1,
reset_time_s=0.1,
num_episodes=2,
push_to_hub=False,
video=False,
display_data=False,
play_sounds=False,
num_image_writer_processes=num_image_writer_processes,
)
dataset = record(robot, rec_cfg)
assert not mock_events["exit_early"], "`exit_early` wasn't properly reset to False"
assert len(dataset) == 1, "`dataset` should contain only 1 frame"

View File

@@ -1,144 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tests for physical robots and their mocked versions.
If the physical robots are not connected to the computer, or not working,
the test will be skipped.
Example of running a specific test:
```bash
pytest -sx tests/test_robots.py::test_robot
```
Example of running test on real robots connected to the computer:
```bash
pytest -sx 'tests/test_robots.py::test_robot[koch-False]'
pytest -sx 'tests/test_robots.py::test_robot[koch_bimanual-False]'
pytest -sx 'tests/test_robots.py::test_robot[aloha-False]'
```
Example of running test on a mocked version of robots:
```bash
pytest -sx 'tests/test_robots.py::test_robot[koch-True]'
pytest -sx 'tests/test_robots.py::test_robot[koch_bimanual-True]'
pytest -sx 'tests/test_robots.py::test_robot[aloha-True]'
```
"""
import pytest
import torch
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.robots.utils import make_robot
from tests.utils import TEST_ROBOT_TYPES, mock_calibration_dir, require_robot
@pytest.mark.parametrize("robot_type, mock", TEST_ROBOT_TYPES)
@require_robot
def test_robot(tmp_path, request, robot_type, mock):
# TODO(rcadene): measure fps in nightly?
# TODO(rcadene): test logs
# TODO(rcadene): add compatibility with other robots
robot_kwargs = {"robot_type": robot_type, "mock": mock}
if robot_type == "aloha" and mock:
# To simplify unit test, we do not rerun manual calibration for Aloha mock=True.
# Instead, we use the files from '.cache/calibration/aloha_default'
pass
else:
if mock:
request.getfixturevalue("patch_builtins_input")
# Create an empty calibration directory to trigger manual calibration
calibration_dir = tmp_path / robot_type
mock_calibration_dir(calibration_dir)
robot_kwargs["calibration_dir"] = calibration_dir
# Test using robot before connecting raises an error
robot = make_robot(**robot_kwargs)
with pytest.raises(DeviceNotConnectedError):
robot.teleop_step()
with pytest.raises(DeviceNotConnectedError):
robot.teleop_step(record_data=True)
with pytest.raises(DeviceNotConnectedError):
robot.capture_observation()
with pytest.raises(DeviceNotConnectedError):
robot.send_action(None)
with pytest.raises(DeviceNotConnectedError):
robot.disconnect()
# Test deleting the object without connecting first
del robot
# Test connecting (triggers manual calibration)
robot = make_robot(**robot_kwargs)
robot.connect()
assert robot.is_connected
# Test connecting twice raises an error
with pytest.raises(DeviceAlreadyConnectedError):
robot.connect()
# TODO(rcadene, aliberts): Test disconnecting with `__del__` instead of `disconnect`
# del robot
robot.disconnect()
# Test teleop can run
robot = make_robot(**robot_kwargs)
robot.connect()
robot.teleop_step()
# Test data recorded during teleop are well formatted
observation, action = robot.teleop_step(record_data=True)
# State
assert "observation.state" in observation
assert isinstance(observation["observation.state"], torch.Tensor)
assert observation["observation.state"].ndim == 1
dim_state = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms)
assert observation["observation.state"].shape[0] == dim_state
# Cameras
for name in robot.cameras:
assert f"observation.images.{name}" in observation
assert isinstance(observation[f"observation.images.{name}"], torch.Tensor)
assert observation[f"observation.images.{name}"].ndim == 3
# Action
assert "action" in action
assert isinstance(action["action"], torch.Tensor)
assert action["action"].ndim == 1
dim_action = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms)
assert action["action"].shape[0] == dim_action
# TODO(rcadene): test if observation and action data are returned as expected
# Test capture_observation can run and observation returned are the same (since the arm didnt move)
captured_observation = robot.capture_observation()
assert set(captured_observation.keys()) == set(observation.keys())
for name in captured_observation:
if "image" in name:
# TODO(rcadene): skipping image for now as it's challenging to assess equality between two consecutive frames
continue
torch.testing.assert_close(captured_observation[name], observation[name], rtol=1e-4, atol=1)
assert captured_observation[name].shape == observation[name].shape
# Test send_action can run
robot.send_action(action["action"])
# Test disconnecting
robot.disconnect()
assert not robot.is_connected
for name in robot.follower_arms:
assert not robot.follower_arms[name].is_connected
for name in robot.leader_arms:
assert not robot.leader_arms[name].is_connected
for name in robot.cameras:
assert not robot.cameras[name].is_connected

View File

@@ -13,11 +13,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import platform
from functools import wraps
from pathlib import Path
import pytest
import torch
@@ -189,46 +187,6 @@ def require_package(package_name):
return decorator
def require_robot(func):
"""
Decorator that skips the test if a robot is not available
The decorated function must have two arguments `request` and `robot_type`.
Example of usage:
```python
@pytest.mark.parametrize(
"robot_type", ["koch", "aloha"]
)
@require_robot
def test_require_robot(request, robot_type):
pass
```
"""
@wraps(func)
def wrapper(*args, **kwargs):
# Access the pytest request context to get the is_robot_available fixture
request = kwargs.get("request")
robot_type = kwargs.get("robot_type")
mock = kwargs.get("mock")
if robot_type is None:
raise ValueError("The 'robot_type' must be an argument of the test function.")
if request is None:
raise ValueError("The 'request' fixture must be an argument of the test function.")
if mock is None:
raise ValueError("The 'mock' variable must be an argument of the test function.")
# Run test with a real robot. Skip test if robot connection fails.
if not mock and not request.getfixturevalue("is_robot_available"):
pytest.skip(f"A {robot_type} robot is not available.")
return func(*args, **kwargs)
return wrapper
def require_camera(func):
@wraps(func)
def wrapper(*args, **kwargs):
@@ -252,55 +210,6 @@ def require_camera(func):
return wrapper
def require_motor(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Access the pytest request context to get the is_motor_available fixture
request = kwargs.get("request")
motor_type = kwargs.get("motor_type")
mock = kwargs.get("mock")
if request is None:
raise ValueError("The 'request' fixture must be an argument of the test function.")
if motor_type is None:
raise ValueError("The 'motor_type' must be an argument of the test function.")
if mock is None:
raise ValueError("The 'mock' variable must be an argument of the test function.")
if not mock and not request.getfixturevalue("is_motor_available"):
pytest.skip(f"A {motor_type} motor is not available.")
return func(*args, **kwargs)
return wrapper
def mock_calibration_dir(calibration_dir):
# TODO(rcadene): remove this hack
# calibration file produced with Moss v1, but works with Koch, Koch bimanual and SO-100
example_calib = {
"homing_offset": [-1416, -845, 2130, 2872, 1950, -2211],
"drive_mode": [0, 0, 1, 1, 1, 0],
"start_pos": [1442, 843, 2166, 2849, 1988, 1835],
"end_pos": [2440, 1869, -1106, -1848, -926, 3235],
"calib_mode": ["DEGREE", "DEGREE", "DEGREE", "DEGREE", "DEGREE", "LINEAR"],
"motor_names": ["shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper"],
}
Path(str(calibration_dir)).mkdir(parents=True, exist_ok=True)
with open(calibration_dir / "main_follower.json", "w") as f:
json.dump(example_calib, f)
with open(calibration_dir / "main_leader.json", "w") as f:
json.dump(example_calib, f)
with open(calibration_dir / "left_follower.json", "w") as f:
json.dump(example_calib, f)
with open(calibration_dir / "left_leader.json", "w") as f:
json.dump(example_calib, f)
with open(calibration_dir / "right_follower.json", "w") as f:
json.dump(example_calib, f)
with open(calibration_dir / "right_leader.json", "w") as f:
json.dump(example_calib, f)
# TODO(rcadene, aliberts): remove this dark pattern that overrides
def make_camera(camera_type: str, **kwargs) -> Camera:
if camera_type == "opencv":