Merge remote-tracking branch 'origin/user/pepijn/2025_01_27_steps_assembly_intructions' into user/aliberts/2025_03_10_new_feetech_calibration

This commit is contained in:
Simon Alibert
2025-03-10 18:59:30 +01:00
5 changed files with 311 additions and 619 deletions

View File

@@ -13,8 +13,6 @@
# limitations under the License.
import enum
import logging
import math
import time
import traceback
from copy import deepcopy
@@ -31,13 +29,6 @@ TIMEOUT_MS = 1000
MAX_ID_RANGE = 252
# The following bounds define the lower and upper joints range (after calibration).
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
# which corresponds to a half rotation on the left and half rotation on the right.
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
# an error is raised.
LOWER_BOUND_DEGREE = -270
UPPER_BOUND_DEGREE = 270
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
@@ -47,7 +38,6 @@ UPPER_BOUND_LINEAR = 110
HALF_TURN_DEGREE = 180
# See this link for STS3215 Memory Table:
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
# data_name: (address, size_byte)
@@ -113,8 +103,6 @@ SCS_SERIES_BAUDRATE_TABLE = {
}
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
MODEL_CONTROL_TABLE = {
"scs_series": SCS_SERIES_CONTROL_TABLE,
@@ -136,15 +124,68 @@ NUM_READ_RETRY = 20
NUM_WRITE_RETRY = 20
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
"""This function converts the degree range to the step range for indicating motors rotation.
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
def convert_ticks_to_degrees(ticks, model):
resolutions = MODEL_RESOLUTION[model]
# Convert the ticks to degrees
return ticks * (360.0 / resolutions)
def convert_degrees_to_ticks(degrees, model):
resolutions = MODEL_RESOLUTION[model]
# Convert degrees to motor ticks
return int(degrees * (resolutions / 360.0))
def adjusted_to_homing_ticks(
raw_motor_ticks: int, encoder_offset: int, model: str, motorbus, motor_id: int
) -> int:
"""
resolutions = [MODEL_RESOLUTION[model] for model in models]
steps = degrees / 180 * np.array(resolutions) / 2
steps = steps.astype(int)
return steps
Shifts raw [0..4095] ticks by an encoder offset, modulo a single turn [0..4095].
"""
resolutions = MODEL_RESOLUTION[model]
# Add offset and wrap within resolution
ticks = (raw_motor_ticks + encoder_offset) % resolutions
# # Re-center into a symmetric range (e.g., [-2048, 2047] if resolutions==4096) Thus the middle homing position will be virtual 0.
if ticks > resolutions // 2:
ticks -= resolutions
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
drive_mode = 0
if motorbus.calibration is not None:
drive_mode = motorbus.calibration["drive_mode"][motor_id - 1]
if drive_mode:
ticks *= -1
return ticks
def adjusted_to_motor_ticks(
adjusted_pos: int, encoder_offset: int, model: str, motorbus, motor_id: int
) -> int:
"""
Inverse of adjusted_to_homing_ticks().
"""
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
drive_mode = 0
if motorbus.calibration is not None:
drive_mode = motorbus.calibration["drive_mode"][motor_id - 1]
if drive_mode:
adjusted_pos *= -1
resolutions = MODEL_RESOLUTION[model]
# Remove offset and wrap within resolution
ticks = (adjusted_pos - encoder_offset) % resolutions
return ticks
def convert_to_bytes(value, bytes, mock=False):
@@ -304,8 +345,6 @@ class FeetechMotorsBus:
self.group_writers = {}
self.logs = {}
self.track_positions = {}
def connect(self):
if self.is_connected:
raise DeviceAlreadyConnectedError(
@@ -402,33 +441,7 @@ class FeetechMotorsBus:
def set_calibration(self, calibration: dict[str, list]):
self.calibration = calibration
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct.
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
"""
try:
values = self.apply_calibration(values, motor_names)
except JointOutOfRangeError as e:
print(e)
self.autocorrect_calibration(values, motor_names)
values = self.apply_calibration(values, motor_names)
return values
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
a "zero position" at 0 degree.
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
in the centered nominal degree range ]-180, 180[.
"""
if motor_names is None:
motor_names = self.motor_names
@@ -440,34 +453,12 @@ class FeetechMotorsBus:
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
motor_idx, model = self.motors[name]
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from range [-2**31, 2**31[ to
# nominal range ]-resolution, resolution[ (e.g. ]-2048, 2048[)
values[i] += homing_offset
# Convert from range ]-resolution, resolution[ to
# universal float32 centered degree range ]-180, 180[
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
f"but present value is {values[i]} degree. "
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
# Convert raw motor ticks to homed ticks, then convert the homed ticks to degrees
values[i] = adjusted_to_homing_ticks(values[i], homing_offset, model, self, motor_idx)
values[i] = convert_ticks_to_degrees(values[i], model)
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
@@ -489,103 +480,6 @@ class FeetechMotorsBus:
return values
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
Some motors might have values outside of expected maximum bounds after calibration.
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
Known issues:
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
#2: Motor internal homing offset is shifted of a full turn, caused by using default calibration (e.g Aloha).
#3: motor internal homing offset is shifted of less or more than a full turn, caused by using default calibration
or by human error during manual calibration.
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
if drive_mode:
values[i] *= -1
# Convert from initial range to range [-180, 180] degrees
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
# (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution
low_factor = (
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
upp_factor = (
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from initial range to range [0, 100] in %
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
# Solve this inequality to find the factor to shift the range into [0, 100] %
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
low_factor = (start_pos - values[i]) / resolution
upp_factor = (end_pos - values[i]) / resolution
if not in_range:
# Get first integer between the two bounds
if low_factor < upp_factor:
factor = math.ceil(low_factor)
if factor > upp_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
else:
factor = math.ceil(upp_factor)
if factor > low_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
logging.warning(
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
f"from '{out_of_range_str}' to '{in_range_str}'."
)
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
self.calibration["homing_offset"][calib_idx] += resolution * factor
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Inverse of `apply_calibration`."""
if motor_names is None:
@@ -596,23 +490,12 @@ class FeetechMotorsBus:
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
motor_idx, model = self.motors[name]
# Convert from nominal 0-centered degree range [-180, 180] to
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
# Subtract the homing offsets to come back to actual motor range of values
# which can be arbitrary.
values[i] -= homing_offset
# Remove drive mode, which is the rotation direction of the motor, to come back to
# actual motor rotation direction which can be arbitrary.
if drive_mode:
values[i] *= -1
# Convert degrees to homed ticks, then convert the homed ticks to raw ticks
values[i] = convert_degrees_to_ticks(values[i], model)
values[i] = adjusted_to_motor_ticks(values[i], homing_offset, model, self, motor_idx)
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
@@ -735,7 +618,7 @@ class FeetechMotorsBus:
self.port_handler.ser.reset_output_buffer()
self.port_handler.ser.reset_input_buffer()
# create new group reader
# Create new group reader
self.group_readers[group_key] = scs.GroupSyncRead(
self.port_handler, self.packet_handler, addr, bytes
)
@@ -760,15 +643,8 @@ class FeetechMotorsBus:
values = np.array(values)
# Convert to signed int to use range [-2048, 2048] for our motor positions.
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
values = values.astype(np.int32)
if data_name in CALIBRATION_REQUIRED:
values = self.avoid_rotation_reset(values, motor_names, data_name)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.apply_calibration_autocorrect(values, motor_names)
values = self.apply_calibration(values, motor_names)
# log the number of seconds it took to read the data from the motors
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)

View File

@@ -15,484 +15,170 @@
"""Logic to calibrate a robot arm built with feetech motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
import time
import numpy as np
from ..motors_bus import MotorsBus
from .feetech import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
def apply_drive_mode(position, drive_mode):
assert_drive_mode(drive_mode)
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
signed_drive_mode = -(drive_mode * 2 - 1)
position *= signed_drive_mode
return position
def move_until_block(arm, motor_name, positive_direction=True, while_move_hook=None):
count = 0
while True:
present_pos = arm.read("Present_Position", motor_name)
if positive_direction:
# Move +100 steps every time. Lower the steps to lower the speed at which the arm moves.
arm.write("Goal_Position", present_pos + 100, motor_name)
else:
arm.write("Goal_Position", present_pos - 100, motor_name)
if while_move_hook is not None:
while_move_hook()
present_pos = arm.read("Present_Position", motor_name).item()
present_speed = arm.read("Present_Speed", motor_name).item()
present_current = arm.read("Present_Current", motor_name).item()
# present_load = arm.read("Present_Load", motor_name).item()
# present_voltage = arm.read("Present_Voltage", motor_name).item()
# present_temperature = arm.read("Present_Temperature", motor_name).item()
# print(f"{present_pos=}")
# print(f"{present_speed=}")
# print(f"{present_current=}")
# print(f"{present_load=}")
# print(f"{present_voltage=}")
# print(f"{present_temperature=}")
if present_speed == 0 and present_current > 40:
count += 1
if count > 100 or present_current > 300:
return present_pos
else:
count = 0
def move_to_calibrate(
arm,
motor_name,
invert_drive_mode=False,
positive_first=True,
in_between_move_hook=None,
while_move_hook=None,
):
initial_pos = arm.read("Present_Position", motor_name)
if positive_first:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
else:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
if in_between_move_hook is not None:
in_between_move_hook()
if positive_first:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
else:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
zero_pos = (n_present_pos + p_present_pos) / 2
calib_data = {
"initial_pos": initial_pos,
"homing_offset": zero_pos if invert_drive_mode else -zero_pos,
"invert_drive_mode": invert_drive_mode,
"drive_mode": -1 if invert_drive_mode else 0,
"zero_pos": zero_pos,
"start_pos": n_present_pos if invert_drive_mode else p_present_pos,
"end_pos": p_present_pos if invert_drive_mode else n_present_pos,
}
return calib_data
def apply_offset(calib, offset):
calib["zero_pos"] += offset
if calib["drive_mode"]:
calib["homing_offset"] += offset
else:
calib["homing_offset"] -= offset
return calib
def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
if robot_type == "so100":
return run_arm_auto_calibration_so100(arm, robot_type, arm_name, arm_type)
elif robot_type == "moss":
return run_arm_auto_calibration_moss(arm, robot_type, arm_name, arm_type)
else:
raise ValueError(robot_type)
def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
def disable_torque(arm: MotorsBus):
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "so100" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of so100 arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
def get_calibration_modes(arm: MotorsBus):
"""Returns calibration modes for each motor (DEGREE for rotational, LINEAR for gripper)."""
return [
CalibrationMode.LINEAR.name if name == "gripper" else CalibrationMode.DEGREE.name
for name in arm.motor_names
]
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
def calibrate_homing_motor(motor_id, motor_bus):
"""
1) Reads servo ticks.
2) Calculates the offset so that 'home_ticks' becomes 0.
3) Returns the offset
"""
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
home_ticks = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts at 0
print(f'{arm.read("Present_Position", "elbow_flex")=}')
# Calculate how many ticks to shift so that 'home_ticks' becomes 0
raw_offset = -home_ticks # negative of home_ticks
encoder_offset = raw_offset % 4096 # wrap to [0..4095]
calib = {}
# Convert to a signed range [-2048..2047]
if encoder_offset > 2047:
encoder_offset -= 4096
init_wf_pos = arm.read("Present_Position", "wrist_flex")
init_sl_pos = arm.read("Present_Position", "shoulder_lift")
init_ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", init_wf_pos - 800, "wrist_flex")
arm.write("Goal_Position", init_sl_pos + 150 + 1024, "shoulder_lift")
arm.write("Goal_Position", init_ef_pos - 2048, "elbow_flex")
time.sleep(2)
print(f"Encoder offset: {encoder_offset}")
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
return encoder_offset
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex")
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=80)
def calibrate_linear_motor(motor_id, motor_bus):
motor_names = motor_bus.motor_names
motor_name = motor_names[motor_id - 1] # TODO(pepijn): replace motor_id with motor index when (id-1)
def in_between_move_hook():
nonlocal arm, calib
time.sleep(2)
ef_pos = arm.read("Present_Position", "elbow_flex")
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", ef_pos + 1024, "elbow_flex")
arm.write("Goal_Position", sl_pos - 1024, "shoulder_lift")
time.sleep(2)
input(f"Close the {motor_name}, then press Enter...")
start_pos = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts ar 0
print(f" [Motor {motor_id}] start position recorded: {start_pos}")
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
)
calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)
input(f"Open the {motor_name} fully, then press Enter...")
end_pos = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts ar 0
print(f" [Motor {motor_id}] end position recorded: {end_pos}")
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex")
time.sleep(1)
return start_pos, end_pos
def in_between_move_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"], "elbow_flex")
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm,
"shoulder_lift",
invert_drive_mode=True,
positive_first=False,
in_between_move_hook=in_between_move_hook,
)
# add an 30 steps as offset to align with body
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=1024 - 50)
def single_motor_calibration(arm: MotorsBus, motor_id: int):
"""Calibrates a single motor and returns its calibration data for updating the calibration file."""
def while_move_hook():
nonlocal arm, calib
positions = {
"shoulder_lift": round(calib["shoulder_lift"]["zero_pos"] - 1600),
"elbow_flex": round(calib["elbow_flex"]["zero_pos"] + 1700),
"wrist_flex": round(calib["wrist_flex"]["zero_pos"] + 800),
"gripper": round(calib["gripper"]["end_pos"]),
}
arm.write("Goal_Position", list(positions.values()), list(positions.keys()))
disable_torque(arm)
print(f"\n--- Calibrating Motor {motor_id} ---")
arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
time.sleep(2)
arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["gripper"]["end_pos"]), "gripper")
time.sleep(2)
start_pos = 0
end_pos = 0
encoder_offset = 0
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(
arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
)
if motor_id == 6:
start_pos, end_pos = calibrate_linear_motor(motor_id, arm)
else:
input("Move the motor to (zero) position, then press Enter...")
encoder_offset = calibrate_homing_motor(motor_id, arm)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 2048, "elbow_flex")
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
print(f"Calibration for motor ID:{motor_id} done.")
# Create a calibration dictionary for the single motor
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
"homing_offset": int(encoder_offset),
"drive_mode": 0,
"start_pos": int(start_pos),
"end_pos": int(end_pos),
"calib_mode": get_calibration_modes(arm)[motor_id - 1],
"motor_name": arm.motor_names[motor_id - 1],
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
def run_full_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""
Runs a full calibration process for all motors in a robotic arm.
if not (robot_type == "moss" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of moss arms for now.")
This function calibrates each motor in the arm, determining encoder offsets and
start/end positions for linear and rotational motors. The calibration data is then
stored in a dictionary for later use.
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
**Calibration Process:**
- The user is prompted to move the arm to its homing position before starting.
- Motors with rotational motion are calibrated using a homing method.
- Linear actuators (e.g., grippers) are calibrated separately.
- Encoder offsets, start positions, and end positions are recorded.
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl_pos - 1024 - 450, "shoulder_lift")
ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", ef_pos + 1024 + 450, "elbow_flex")
time.sleep(2)
calib = {}
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex", invert_drive_mode=True)
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=-210 + 1024)
wr_pos = arm.read("Present_Position", "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", wr_pos - 1024, "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["end_pos"], "gripper")
time.sleep(1)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(arm, "wrist_roll", invert_drive_mode=True)
calib["wrist_roll"] = apply_offset(calib["wrist_roll"], offset=790)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"] - 1024, "wrist_roll")
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
def in_between_move_elbow_flex_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm,
"elbow_flex",
invert_drive_mode=True,
in_between_move_hook=in_between_move_elbow_flex_hook,
)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
def in_between_move_shoulder_lift_hook():
nonlocal arm, calib
sl = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl - 1500, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1536, "elbow_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["start_pos"], "wrist_flex")
time.sleep(1)
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm, "shoulder_lift", in_between_move_hook=in_between_move_shoulder_lift_hook
)
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=-1024)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift")
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex")
time.sleep(2)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""This function ensures that a neural network trained on data collected on a given robot
can work on another robot. For instance before calibration, setting a same goal position
for each motor of two different robots will get two very different positions. But after calibration,
the two robots will move to the same position.To this end, this function computes the homing offset
and the drive mode for each motor of a given robot.
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
to the "rotated position".
After calibration, the homing offsets and drive modes are stored in a cache.
Example of usage:
**Example Usage:**
```python
run_arm_calibration(arm, "so100", "left", "follower")
run_full_arm_calibration(arm, "so100", "left", "follower")
```
"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
disable_torque(arm)
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
print("\nMove arm to homing position (middle)")
print(
"See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero")
) # TODO(pepijn): replace with new instruction homing pos (all motors in middle) in tutorial
input("Press Enter to continue...")
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
start_positions = np.zeros(len(arm.motor_indices))
end_positions = np.zeros(len(arm.motor_indices))
encoder_offsets = np.zeros(len(arm.motor_indices))
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
homing_offset = zero_target_pos - zero_pos
modes = get_calibration_modes(arm)
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
# This allows to identify the rotation direction of each motor.
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
for i, motor_id in enumerate(arm.motor_indices):
if modes[i] == CalibrationMode.DEGREE.name:
encoder_offsets[i] = calibrate_homing_motor(motor_id, arm)
start_positions[i] = 0
end_positions[i] = 0
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
rotated_pos = arm.read("Present_Position")
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
homing_offset = rotated_target_pos - rotated_drived_pos
for i, motor_id in enumerate(arm.motor_indices):
if modes[i] == CalibrationMode.LINEAR.name:
start_positions[i], end_positions[i] = calibrate_linear_motor(motor_id, arm)
encoder_offsets[i] = 0
print("\nMove arm to rest position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
input("Press Enter to continue...")
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
print(f"\n calibration of {robot_type} {arm_name} {arm_type} done!")
# Force drive_mode values: motors 2 and 5 -> drive_mode 1; all others -> 0. 1 = clockwise = positive range (0..180), 0 = clockwise = negative range (0..-180)
drive_modes = [0, 1, 0, 0, 1, 0]
calib_dict = {
"homing_offset": homing_offset.tolist(),
"drive_mode": drive_mode.tolist(),
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_modes,
"homing_offset": encoder_offsets.astype(int).tolist(),
"drive_mode": drive_modes,
"start_pos": start_positions.astype(int).tolist(),
"end_pos": end_positions.astype(int).tolist(),
"calib_mode": get_calibration_modes(arm),
"motor_names": arm.motor_names,
}
return calib_dict
def run_full_auto_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""TODO(pepijn): Add this method later as extra
Example of usage:
```python
run_full_auto_arm_calibration(arm, "so100", "left", "follower")
```
"""
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")

View File

@@ -342,10 +342,10 @@ class ManipulatorRobot:
elif self.robot_type in ["so100", "moss", "lekiwi"]:
from lerobot.common.motors.feetech.feetech_calibration import (
run_arm_manual_calibration,
run_full_arm_calibration,
)
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)

View File

@@ -0,0 +1,126 @@
import argparse
import json
import time
from pathlib import Path
from lerobot.common.robot_devices.motors.feetech import (
FeetechMotorsBus,
adjusted_to_homing_ticks,
adjusted_to_motor_ticks,
convert_degrees_to_ticks,
convert_ticks_to_degrees,
)
# Replace this import with your real config class import
# (e.g., So100RobotConfig or any other)
from lerobot.common.robot_devices.robots.configs import So100RobotConfig
from lerobot.common.robot_devices.robots.utils import make_robot_from_config
def debug_feetech_positions(cfg, arm_arg: str):
"""
Reads each joints (1) raw ticks, (2) homed ticks, (3) degrees, and (4) invert-adjusted ticks.
:param cfg: A config object (e.g. So100RobotConfig).
:param arm_arg: One of "main_leader" or "main_follower".
"""
# 1) Make the Robot from your config
# e.g. `So100RobotConfig` might already be the "robot object",
# or if it is purely a config structure, do: robot = make_robot_from_config(cfg).
robot = make_robot_from_config(cfg)
# 2) Parse which arm we want: 'main_leader' or 'main_follower'
if arm_arg not in ("main_leader", "main_follower"):
raise ValueError("Please specify --arm=main_leader or --arm=main_follower")
bus_config = robot.leader_arms["main"] if arm_arg == "main_leader" else robot.follower_arms["main"]
# 3) Create the Feetech bus from that config
bus = FeetechMotorsBus(bus_config)
# 4) (Optional) Load calibration if it exists
calib_file = Path(robot.calibration_dir) / f"{arm_arg}.json"
if calib_file.exists():
with open(calib_file) as f:
calibration_dict = json.load(f)
bus.set_calibration(calibration_dict)
print(f"Loaded calibration from {calib_file}")
else:
print(f"No calibration file found at {calib_file}, skipping calibration set.")
# 5) Connect to the bus
bus.connect()
print(f"Connected to Feetech bus on port: {bus.port}")
# 6) Disable torque on all motors so you can move them freely by hand
bus.write("Torque_Enable", 0, motor_names=bus.motor_names)
print("Torque disabled on all joints.")
try:
print("\nPress Ctrl+C to quit.\n")
while True:
# (a) Read *raw* positions (no calibration)
raw_positions = bus.read_with_motor_ids(
bus.motor_models, bus.motor_indices, data_name="Present_Position"
)
# (b) Read *already-homed* positions (calibration is applied automatically)
homed_positions = bus.read("Present_Position")
# Print them side by side
for i, name in enumerate(bus.motor_names):
motor_idx, model = bus.motors[name]
raw_ticks = raw_positions[i] # 0..4095
homed_val = homed_positions[i] # degrees or % if linear
# If you want to see how offset is used inside bus.read(), do it manually:
offset = 0
if bus.calibration and name in bus.calibration["motor_names"]:
offset_idx = bus.calibration["motor_names"].index(name)
offset = bus.calibration["homing_offset"][offset_idx]
# Manually compute "adjusted ticks" from raw ticks
manual_adjusted = adjusted_to_homing_ticks(raw_ticks, offset, model, bus, motor_idx)
# Convert to degrees
manual_degs = convert_ticks_to_degrees(manual_adjusted, model)
# Convert to ticks
manual_ticks = convert_degrees_to_ticks(manual_degs, model)
# Invert
inv_ticks = adjusted_to_motor_ticks(manual_ticks, offset, model, bus, motor_idx)
print(
f"{name:15s} | "
f"RAW={raw_ticks:4d} | "
f"HOMED_FROM_READ={homed_val:7.2f} | "
f"HOMED_TICKS={manual_adjusted:6d} | "
f"MANUAL_ADJ_DEG={manual_degs:7.2f} | "
f"MANUAL_ADJ_TICKS={manual_ticks:6d} | "
f"INV_TICKS={inv_ticks:4d} "
)
print("----------------------------------------------------")
time.sleep(0.25) # slow down loop
except KeyboardInterrupt:
pass
finally:
print("\nExiting. Disconnecting bus...")
bus.disconnect()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Debug Feetech positions.")
parser.add_argument(
"--arm",
type=str,
choices=["main_leader", "main_follower"],
default="main_leader",
help="Which arm to debug: 'main_leader' or 'main_follower'.",
)
args = parser.parse_args()
# 1) Instantiate the config you want (So100RobotConfig, or whichever your project uses).
cfg = So100RobotConfig()
# 2) Call the function with (cfg, args.arm)
debug_feetech_positions(cfg, arm_arg=args.arm)

View File

@@ -145,15 +145,19 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
# the motors. Note: this configuration is not in the official STS3215 Memory Table
motor_bus.write("Lock", 0)
motor_bus.write("Maximum_Acceleration", 254)
motor_bus.write("Goal_Position", 2048)
time.sleep(4)
print("Present Position", motor_bus.read("Present_Position"))
motor_bus.write("Max_Angle_Limit", 4095) # default 4095
motor_bus.write("Min_Angle_Limit", 0) # default 0
motor_bus.write("Offset", 0)
time.sleep(4)
motor_bus.write("Mode", 0)
motor_bus.write("Goal_Position", 0)
motor_bus.write("Torque_Enable", 0)
motor_bus.write("Lock", 1)
print("Offset", motor_bus.read("Offset"))
# TODO(pepijn): Add when doing a motor configuration, you instantainesly home the position (while assembling)
# single_calibration = single_motor_calibration(motor_bus, motor_idx_des)
# Then store single_calibration in yaml via dict (not overwrite but add the single calibration each time for motor id)
except Exception as e:
print(f"Error occurred during motor configuration: {e}")