feat(train): add accelerate for multi gpu training (#2154)

* Enhance training and logging functionality with accelerator support

- Added support for multi-GPU training by introducing an `accelerator` parameter in training functions.
- Updated `update_policy` to handle gradient updates based on the presence of an accelerator.
- Modified logging to prevent duplicate messages in non-main processes.
- Enhanced `set_seed` and `get_safe_torch_device` functions to accommodate accelerator usage.
- Updated `MetricsTracker` to account for the number of processes when calculating metrics.
- Introduced a new feature in `pyproject.toml` for the `accelerate` library dependency.

* Initialize logging in training script for both main and non-main processes

- Added `init_logging` calls to ensure proper logging setup when using the accelerator and in standard training mode.
- This change enhances the clarity and consistency of logging during training sessions.

* add docs and only push model once

* Place  logging under accelerate and update docs

* fix pre commit

* only log in main process

* main logging

* try with local rank

* add tests

* change runner

* fix test

* dont push to hub in multi gpu tests

* pre download dataset in tests

* small fixes

* fix path optimizer state

* update docs, and small improvements in train

* simplify accelerate main process detection

* small improvements in train

* fix OOM bug

* change accelerate detection

* add some debugging

* always use accelerate

* cleanup update method

* cleanup

* fix bug

* scale lr decay if we reduce steps

* cleanup logging

* fix formatting

* encorperate feedback pr

* add min memory to cpu tests

* use accelerate to determin logging

* fix precommit and fix tests

* chore: minor details

---------

Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com>
Co-authored-by: Steven Palma <steven.palma@huggingface.co>
This commit is contained in:
Pepijn
2025-10-16 17:41:55 +02:00
committed by GitHub
parent 845b359d39
commit e82e7a02e9
13 changed files with 625 additions and 134 deletions

View File

@@ -119,6 +119,7 @@ jobs:
TRITON_CACHE_DIR: /home/user_lerobot/.cache/triton
container:
image: ${{ needs.build-docker-cpu-nightly.outputs.image_tag }} # zizmor: ignore[unpinned-images]
options: --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_LEROBOT_USERNAME }}
password: ${{ secrets.DOCKERHUB_LEROBOT_PASSWORD }}
@@ -158,3 +159,35 @@ jobs:
run: pytest tests -vv --maxfail=10
- name: Run end-to-end tests
run: make test-end-to-end
# This job runs multi-GPU training tests with 4 GPUs
nightly-multi-gpu-tests:
name: Nightly Multi-GPU Tests
needs: [build-docker-gpu-nightly]
runs-on:
group: aws-g4dn-12xlarge # Instance with 4 GPUs
env:
HF_HOME: /home/user_lerobot/.cache/huggingface
HF_LEROBOT_HOME: /home/user_lerobot/.cache/huggingface/lerobot
TORCH_HOME: /home/user_lerobot/.cache/torch
TRITON_CACHE_DIR: /home/user_lerobot/.cache/triton
CUDA_VISIBLE_DEVICES: "0,1,2,3"
container:
image: ${{ needs.build-docker-gpu-nightly.outputs.image_tag }} # zizmor: ignore[unpinned-images]
options: --gpus all --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_LEROBOT_USERNAME }}
password: ${{ secrets.DOCKERHUB_LEROBOT_PASSWORD }}
defaults:
run:
shell: bash
working-directory: /lerobot
steps:
- name: Verify GPU availability
run: |
nvidia-smi
python -c "import torch; print(f'PyTorch CUDA available: {torch.cuda.is_available()}'); print(f'Number of GPUs: {torch.cuda.device_count()}')"
- name: Run multi-GPU training tests
run: pytest tests/training/test_multi_gpu.py -vv --maxfail=3
timeout-minutes: 10

View File

@@ -17,6 +17,8 @@
title: Train RL in Simulation
- local: async
title: Use Async Inference
- local: multi_gpu_training
title: Multi GPU training
title: "Tutorials"
- sections:
- local: lerobot-dataset-v3

View File

@@ -0,0 +1,125 @@
# Multi-GPU Training
This guide shows you how to train policies on multiple GPUs using [Hugging Face Accelerate](https://huggingface.co/docs/accelerate).
## Installation
First, ensure you have accelerate installed:
```bash
pip install accelerate
```
## Training with Multiple GPUs
You can launch training in two ways:
### Option 1: Without config (specify parameters directly)
You can specify all parameters directly in the command without running `accelerate config`:
```bash
accelerate launch \
--multi_gpu \
--num_processes=2 \
$(which lerobot-train) \
--dataset.repo_id=${HF_USER}/my_dataset \
--policy.type=act \
--policy.repo_id=${HF_USER}/my_trained_policy \
--output_dir=outputs/train/act_multi_gpu \
--job_name=act_multi_gpu \
--wandb.enable=true
```
**Key accelerate parameters:**
- `--multi_gpu`: Enable multi-GPU training
- `--num_processes=2`: Number of GPUs to use
- `--mixed_precision=fp16`: Use fp16 mixed precision (or `bf16` if supported)
### Option 2: Using accelerate config
If you prefer to save your configuration, you can optionally configure accelerate for your hardware setup by running:
```bash
accelerate config
```
This interactive setup will ask you questions about your training environment (number of GPUs, mixed precision settings, etc.) and saves the configuration for future use. For a simple multi-GPU setup on a single machine, you can use these recommended settings:
- Compute environment: This machine
- Number of machines: 1
- Number of processes: (number of GPUs you want to use)
- GPU ids to use: (leave empty to use all)
- Mixed precision: fp16 or bf16 (recommended for faster training)
Then launch training with:
```bash
accelerate launch $(which lerobot-train) \
--dataset.repo_id=${HF_USER}/my_dataset \
--policy.type=act \
--policy.repo_id=${HF_USER}/my_trained_policy \
--output_dir=outputs/train/act_multi_gpu \
--job_name=act_multi_gpu \
--wandb.enable=true
```
## How It Works
When you launch training with accelerate:
1. **Automatic detection**: LeRobot automatically detects if it's running under accelerate
2. **Data distribution**: Your batch is automatically split across GPUs
3. **Gradient synchronization**: Gradients are synchronized across GPUs during backpropagation
4. **Single process logging**: Only the main process logs to wandb and saves checkpoints
## Learning Rate and Training Steps Scaling
**Important:** LeRobot does **NOT** automatically scale learning rates or training steps based on the number of GPUs. This gives you full control over your training hyperparameters.
### Why No Automatic Scaling?
Many distributed training frameworks automatically scale the learning rate by the number of GPUs (e.g., `lr = base_lr × num_gpus`).
However, LeRobot keeps the learning rate exactly as you specify it.
### When and How to Scale
If you want to scale your hyperparameters when using multiple GPUs, you should do it manually:
**Learning Rate Scaling:**
```bash
# Example: 2 GPUs with linear LR scaling
# Base LR: 1e-4, with 2 GPUs -> 2e-4
accelerate launch --num_processes=2 $(which lerobot-train) \
--optimizer.lr=2e-4 \
--dataset.repo_id=lerobot/pusht \
--policy=act
```
**Training Steps Scaling:**
Since the effective batch size `bs` increases with multiple GPUs (batch_size × num_gpus), you may want to reduce the number of training steps proportionally:
```bash
# Example: 2 GPUs with effective batch size 2x larger
# Original: batch_size=8, steps=100000
# With 2 GPUs: batch_size=8 (16 in total), steps=50000
accelerate launch --num_processes=2 $(which lerobot-train) \
--batch_size=8 \
--steps=50000 \
--dataset.repo_id=lerobot/pusht \
--policy=act
```
## Notes
- The `--policy.use_amp` flag in `lerobot-train` is only used when **not** running with accelerate. When using accelerate, mixed precision is controlled by accelerate's configuration.
- Training logs, checkpoints, and hub uploads are only done by the main process to avoid conflicts. Non-main processes have console logging disabled to prevent duplicate output.
- The effective batch size is `batch_size × num_gpus`. If you use 4 GPUs with `--batch_size=8`, your effective batch size is 32.
- Learning rate scheduling is handled correctly across multiple processes—LeRobot sets `step_scheduler_with_optimizer=False` to prevent accelerate from adjusting scheduler steps based on the number of processes.
- When saving or pushing models, LeRobot automatically unwraps the model from accelerate's distributed wrapper to ensure compatibility.
- WandB integration automatically initializes only on the main process, preventing multiple runs from being created.
For more advanced configurations and troubleshooting, see the [Accelerate documentation](https://huggingface.co/docs/accelerate). If you want to learn more about how to train on a large number of GPUs, checkout this awesome guide: [Ultrascale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook).

View File

@@ -62,6 +62,7 @@ dependencies = [
"datasets>=4.0.0,<4.2.0",
"diffusers>=0.27.2,<0.36.0",
"huggingface-hub[hf-transfer,cli]>=0.34.2,<0.36.0",
"accelerate>=1.10.0,<2.0.0",
# Core dependencies
"setuptools>=71.0.0,<81.0.0",

View File

@@ -14,6 +14,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
import logging
import math
from dataclasses import asdict, dataclass
from pathlib import Path
@@ -79,7 +80,11 @@ class VQBeTSchedulerConfig(LRSchedulerConfig):
@LRSchedulerConfig.register_subclass("cosine_decay_with_warmup")
@dataclass
class CosineDecayWithWarmupSchedulerConfig(LRSchedulerConfig):
"""Used by Physical Intelligence to train Pi0"""
"""Used by Physical Intelligence to train Pi0.
Automatically scales warmup and decay steps if num_training_steps < num_decay_steps.
This ensures the learning rate schedule completes properly even with shorter training runs.
"""
num_warmup_steps: int
num_decay_steps: int
@@ -87,23 +92,39 @@ class CosineDecayWithWarmupSchedulerConfig(LRSchedulerConfig):
decay_lr: float
def build(self, optimizer: Optimizer, num_training_steps: int) -> LambdaLR:
del num_training_steps
# Auto-scale scheduler parameters if training steps are shorter than configured decay steps
actual_warmup_steps = self.num_warmup_steps
actual_decay_steps = self.num_decay_steps
if num_training_steps < self.num_decay_steps:
# Calculate scaling factor to fit the schedule into the available training steps
scale_factor = num_training_steps / self.num_decay_steps
actual_warmup_steps = int(self.num_warmup_steps * scale_factor)
actual_decay_steps = num_training_steps
logging.info(
f"Auto-scaling LR scheduler: "
f"num_training_steps ({num_training_steps}) < num_decay_steps ({self.num_decay_steps}). "
f"Scaling warmup: {self.num_warmup_steps}{actual_warmup_steps}, "
f"decay: {self.num_decay_steps}{actual_decay_steps} "
f"(scale factor: {scale_factor:.3f})"
)
def lr_lambda(current_step):
def linear_warmup_schedule(current_step):
if current_step <= 0:
return 1 / (self.num_warmup_steps + 1)
frac = 1 - current_step / self.num_warmup_steps
return (1 / (self.num_warmup_steps + 1) - 1) * frac + 1
return 1 / (actual_warmup_steps + 1)
frac = 1 - current_step / actual_warmup_steps
return (1 / (actual_warmup_steps + 1) - 1) * frac + 1
def cosine_decay_schedule(current_step):
step = min(current_step, self.num_decay_steps)
cosine_decay = 0.5 * (1 + math.cos(math.pi * step / self.num_decay_steps))
step = min(current_step, actual_decay_steps)
cosine_decay = 0.5 * (1 + math.cos(math.pi * step / actual_decay_steps))
alpha = self.decay_lr / self.peak_lr
decayed = (1 - alpha) * cosine_decay + alpha
return decayed
if current_step < self.num_warmup_steps:
if current_step < actual_warmup_steps:
return linear_warmup_schedule(current_step)
return cosine_decay_schedule(current_step)

View File

@@ -75,6 +75,8 @@ class PI0Config(PreTrainedConfig):
optimizer_grad_clip_norm: float = 1.0
# Scheduler settings: see openpi `CosineDecaySchedule`
# Note: These will auto-scale if --steps < scheduler_decay_steps
# For example, --steps=3000 will scale warmup to 100 and decay to 3000
scheduler_warmup_steps: int = 1_000
scheduler_decay_steps: int = 30_000
scheduler_decay_lr: float = 2.5e-6

View File

@@ -75,6 +75,8 @@ class PI05Config(PreTrainedConfig):
optimizer_grad_clip_norm: float = 1.0
# Scheduler settings: see openpi `CosineDecaySchedule`
# Note: These will auto-scale if --steps < scheduler_decay_steps
# For example, --steps=3000 will scale warmup to 100 and decay to 3000
scheduler_warmup_steps: int = 1_000
scheduler_decay_steps: int = 30_000
scheduler_decay_lr: float = 2.5e-6

View File

@@ -99,7 +99,7 @@ class WandBLogger:
cfg.wandb.run_id = run_id
# Handle custom step key for rl asynchronous training.
self._wandb_custom_step_key: set[str] | None = None
print(colored("Logs will be synced with wandb.", "blue", attrs=["bold"]))
logging.info(colored("Logs will be synced with wandb.", "blue", attrs=["bold"]))
logging.info(f"Track this run --> {colored(wandb.run.get_url(), 'yellow', attrs=['bold'])}")
self._wandb = wandb

View File

@@ -20,8 +20,8 @@ from pprint import pformat
from typing import Any
import torch
from accelerate import Accelerator
from termcolor import colored
from torch.amp import GradScaler
from torch.optim import Optimizer
from lerobot.configs import parser
@@ -34,7 +34,6 @@ from lerobot.envs.utils import close_envs
from lerobot.optim.factory import make_optimizer_and_scheduler
from lerobot.policies.factory import make_policy, make_pre_post_processors
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.policies.utils import get_device_from_parameters
from lerobot.rl.wandb_utils import WandBLogger
from lerobot.scripts.lerobot_eval import eval_policy_all
from lerobot.utils.logging_utils import AverageMeter, MetricsTracker
@@ -48,7 +47,6 @@ from lerobot.utils.train_utils import (
)
from lerobot.utils.utils import (
format_big_number,
get_safe_torch_device,
has_method,
init_logging,
)
@@ -60,16 +58,15 @@ def update_policy(
batch: Any,
optimizer: Optimizer,
grad_clip_norm: float,
grad_scaler: GradScaler,
accelerator: Accelerator,
lr_scheduler=None,
use_amp: bool = False,
lock=None,
) -> tuple[MetricsTracker, dict]:
"""
Performs a single training step to update the policy's weights.
This function executes the forward and backward passes, clips gradients, and steps the optimizer and
learning rate scheduler. It also handles mixed-precision training via a GradScaler.
learning rate scheduler. Accelerator handles mixed-precision training automatically.
Args:
train_metrics: A MetricsTracker instance to record training statistics.
@@ -77,9 +74,8 @@ def update_policy(
batch: A batch of training data.
optimizer: The optimizer used to update the policy's parameters.
grad_clip_norm: The maximum norm for gradient clipping.
grad_scaler: The GradScaler for automatic mixed-precision training.
accelerator: The Accelerator instance for distributed training and mixed precision.
lr_scheduler: An optional learning rate scheduler.
use_amp: A boolean indicating whether to use automatic mixed precision.
lock: An optional lock for thread-safe optimizer updates.
Returns:
@@ -88,28 +84,27 @@ def update_policy(
- A dictionary of outputs from the policy's forward pass, for logging purposes.
"""
start_time = time.perf_counter()
device = get_device_from_parameters(policy)
policy.train()
with torch.autocast(device_type=device.type) if use_amp else nullcontext():
# Let accelerator handle mixed precision
with accelerator.autocast():
loss, output_dict = policy.forward(batch)
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
grad_scaler.scale(loss).backward()
# Unscale the gradient of the optimizer's assigned params in-place **prior to gradient clipping**.
grad_scaler.unscale_(optimizer)
# Use accelerator's backward method
accelerator.backward(loss)
grad_norm = torch.nn.utils.clip_grad_norm_(
policy.parameters(),
grad_clip_norm,
error_if_nonfinite=False,
)
# Clip gradients if specified
if grad_clip_norm > 0:
grad_norm = accelerator.clip_grad_norm_(policy.parameters(), grad_clip_norm)
else:
grad_norm = torch.nn.utils.clip_grad_norm_(
policy.parameters(), float("inf"), error_if_nonfinite=False
)
# Optimizer's gradients are already unscaled, so scaler.step does not unscale them,
# although it still skips optimizer.step() if the gradients contain infs or NaNs.
# Optimizer step
with lock if lock is not None else nullcontext():
grad_scaler.step(optimizer)
# Updates the scale for next iteration.
grad_scaler.update()
optimizer.step()
optimizer.zero_grad()
@@ -117,9 +112,9 @@ def update_policy(
if lr_scheduler is not None:
lr_scheduler.step()
if has_method(policy, "update"):
# To possibly update an internal buffer (for instance an Exponential Moving Average like in TDMPC).
policy.update()
# Update internal buffers if policy has update method
if has_method(accelerator.unwrap_model(policy, keep_fp32_wrapper=True), "update"):
accelerator.unwrap_model(policy, keep_fp32_wrapper=True).update()
train_metrics.loss = loss.item()
train_metrics.grad_norm = grad_norm.item()
@@ -129,7 +124,7 @@ def update_policy(
@parser.wrap()
def train(cfg: TrainPipelineConfig):
def train(cfg: TrainPipelineConfig, accelerator: Accelerator | None = None):
"""
Main function to train a policy.
@@ -143,41 +138,76 @@ def train(cfg: TrainPipelineConfig):
Args:
cfg: A `TrainPipelineConfig` object containing all training configurations.
accelerator: Optional Accelerator instance. If None, one will be created automatically.
"""
cfg.validate()
logging.info(pformat(cfg.to_dict()))
if cfg.wandb.enable and cfg.wandb.project:
# Create Accelerator if not provided
# It will automatically detect if running in distributed mode or single-process mode
# We set step_scheduler_with_optimizer=False to prevent accelerate from adjusting the lr_scheduler steps based on the num_processes
# We set find_unused_parameters=True to handle models with conditional computation
if accelerator is None:
from accelerate.utils import DistributedDataParallelKwargs
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(step_scheduler_with_optimizer=False, kwargs_handlers=[ddp_kwargs])
init_logging(accelerator=accelerator)
# Determine if this is the main process (for logging and checkpointing)
# When using accelerate, only the main process should log to avoid duplicate outputs
is_main_process = accelerator.is_main_process
# Only log on main process
if is_main_process:
logging.info(pformat(cfg.to_dict()))
# Initialize wandb only on main process
if cfg.wandb.enable and cfg.wandb.project and is_main_process:
wandb_logger = WandBLogger(cfg)
else:
wandb_logger = None
logging.info(colored("Logs will be saved locally.", "yellow", attrs=["bold"]))
if is_main_process:
logging.info(colored("Logs will be saved locally.", "yellow", attrs=["bold"]))
if cfg.seed is not None:
set_seed(cfg.seed)
set_seed(cfg.seed, accelerator=accelerator)
# Check device is available
device = get_safe_torch_device(cfg.policy.device, log=True)
# Use accelerator's device
device = accelerator.device
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
logging.info("Creating dataset")
dataset = make_dataset(cfg)
# Dataset loading synchronization: main process downloads first to avoid race conditions
if is_main_process:
logging.info("Creating dataset")
dataset = make_dataset(cfg)
accelerator.wait_for_everyone()
# Now all other processes can safely load the dataset
if not is_main_process:
dataset = make_dataset(cfg)
# Create environment used for evaluating checkpoints during training on simulation data.
# On real-world data, no need to create an environment as evaluations are done outside train.py,
# using the eval.py instead, with gym_dora environment and dora-rs.
eval_env = None
if cfg.eval_freq > 0 and cfg.env is not None:
logging.info("Creating env")
if is_main_process:
logging.info("Creating env")
eval_env = make_env(cfg.env, n_envs=cfg.eval.batch_size, use_async_envs=cfg.eval.use_async_envs)
logging.info("Creating policy")
if is_main_process:
logging.info("Creating policy")
policy = make_policy(
cfg=cfg.policy,
ds_meta=dataset.meta,
)
# Wait for all processes to finish policy creation before continuing
accelerator.wait_for_everyone()
# Create processors - only provide dataset_stats if not resuming from saved processors
processor_kwargs = {}
postprocessor_kwargs = {}
@@ -209,9 +239,9 @@ def train(cfg: TrainPipelineConfig):
**postprocessor_kwargs,
)
logging.info("Creating optimizer and scheduler")
if is_main_process:
logging.info("Creating optimizer and scheduler")
optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy)
grad_scaler = GradScaler(device.type, enabled=cfg.policy.use_amp)
step = 0 # number of policy updates (forward + backward + optim)
@@ -221,14 +251,18 @@ def train(cfg: TrainPipelineConfig):
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in policy.parameters())
logging.info(colored("Output dir:", "yellow", attrs=["bold"]) + f" {cfg.output_dir}")
if cfg.env is not None:
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.steps=} ({format_big_number(cfg.steps)})")
logging.info(f"{dataset.num_frames=} ({format_big_number(dataset.num_frames)})")
logging.info(f"{dataset.num_episodes=}")
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
if is_main_process:
logging.info(colored("Output dir:", "yellow", attrs=["bold"]) + f" {cfg.output_dir}")
if cfg.env is not None:
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.steps=} ({format_big_number(cfg.steps)})")
logging.info(f"{dataset.num_frames=} ({format_big_number(dataset.num_frames)})")
logging.info(f"{dataset.num_episodes=}")
num_processes = accelerator.num_processes
effective_bs = cfg.batch_size * num_processes
logging.info(f"Effective batch size: {cfg.batch_size} x {num_processes} = {effective_bs}")
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
# create dataloader for offline training
if hasattr(cfg.policy, "drop_n_last_frames"):
@@ -251,7 +285,13 @@ def train(cfg: TrainPipelineConfig):
sampler=sampler,
pin_memory=device.type == "cuda",
drop_last=False,
prefetch_factor=2,
prefetch_factor=2 if cfg.num_workers > 0 else None,
)
# Prepare everything with accelerator
accelerator.wait_for_everyone()
policy, optimizer, dataloader, lr_scheduler = accelerator.prepare(
policy, optimizer, dataloader, lr_scheduler
)
dl_iter = cycle(dataloader)
@@ -265,11 +305,20 @@ def train(cfg: TrainPipelineConfig):
"dataloading_s": AverageMeter("data_s", ":.3f"),
}
# Use effective batch size for proper epoch calculation in distributed training
effective_batch_size = cfg.batch_size * accelerator.num_processes
train_tracker = MetricsTracker(
cfg.batch_size, dataset.num_frames, dataset.num_episodes, train_metrics, initial_step=step
effective_batch_size,
dataset.num_frames,
dataset.num_episodes,
train_metrics,
initial_step=step,
accelerator=accelerator,
)
logging.info("Start offline training on a fixed dataset")
if is_main_process:
logging.info("Start offline training on a fixed dataset")
for _ in range(step, cfg.steps):
start_time = time.perf_counter()
batch = next(dl_iter)
@@ -282,16 +331,15 @@ def train(cfg: TrainPipelineConfig):
batch,
optimizer,
cfg.optimizer.grad_clip_norm,
grad_scaler=grad_scaler,
accelerator=accelerator,
lr_scheduler=lr_scheduler,
use_amp=cfg.policy.use_amp,
)
# Note: eval and checkpoint happens *after* the `step`th training update has completed, so we
# increment `step` here.
step += 1
train_tracker.step()
is_log_step = cfg.log_freq > 0 and step % cfg.log_freq == 0
is_log_step = cfg.log_freq > 0 and step % cfg.log_freq == 0 and is_main_process
is_saving_step = step % cfg.save_freq == 0 or step == cfg.steps
is_eval_step = cfg.eval_freq > 0 and step % cfg.eval_freq == 0
@@ -305,69 +353,90 @@ def train(cfg: TrainPipelineConfig):
train_tracker.reset_averages()
if cfg.save_checkpoint and is_saving_step:
logging.info(f"Checkpoint policy after step {step}")
checkpoint_dir = get_step_checkpoint_dir(cfg.output_dir, cfg.steps, step)
save_checkpoint(
checkpoint_dir, step, cfg, policy, optimizer, lr_scheduler, preprocessor, postprocessor
)
update_last_checkpoint(checkpoint_dir)
if wandb_logger:
wandb_logger.log_policy(checkpoint_dir)
if cfg.env and is_eval_step:
step_id = get_step_identifier(step, cfg.steps)
logging.info(f"Eval policy at step {step}")
with (
torch.no_grad(),
torch.autocast(device_type=device.type) if cfg.policy.use_amp else nullcontext(),
):
eval_info = eval_policy_all(
envs=eval_env, # dict[suite][task_id] -> vec_env
policy=policy,
if is_main_process:
logging.info(f"Checkpoint policy after step {step}")
checkpoint_dir = get_step_checkpoint_dir(cfg.output_dir, cfg.steps, step)
save_checkpoint(
checkpoint_dir=checkpoint_dir,
step=step,
cfg=cfg,
policy=accelerator.unwrap_model(policy),
optimizer=optimizer,
scheduler=lr_scheduler,
preprocessor=preprocessor,
postprocessor=postprocessor,
n_episodes=cfg.eval.n_episodes,
videos_dir=cfg.output_dir / "eval" / f"videos_step_{step_id}",
max_episodes_rendered=4,
start_seed=cfg.seed,
max_parallel_tasks=cfg.env.max_parallel_tasks,
)
# overall metrics (suite-agnostic)
aggregated = eval_info["overall"]
update_last_checkpoint(checkpoint_dir)
if wandb_logger:
wandb_logger.log_policy(checkpoint_dir)
# optional: per-suite logging
for suite, suite_info in eval_info.items():
logging.info("Suite %s aggregated: %s", suite, suite_info)
accelerator.wait_for_everyone()
# meters/tracker
eval_metrics = {
"avg_sum_reward": AverageMeter("∑rwrd", ":.3f"),
"pc_success": AverageMeter("success", ":.1f"),
"eval_s": AverageMeter("eval_s", ":.3f"),
}
eval_tracker = MetricsTracker(
cfg.batch_size, dataset.num_frames, dataset.num_episodes, eval_metrics, initial_step=step
)
eval_tracker.eval_s = aggregated.pop("eval_s")
eval_tracker.avg_sum_reward = aggregated.pop("avg_sum_reward")
eval_tracker.pc_success = aggregated.pop("pc_success")
if wandb_logger:
wandb_log_dict = {**eval_tracker.to_dict(), **eval_info}
wandb_logger.log_dict(wandb_log_dict, step, mode="eval")
wandb_logger.log_video(eval_info["overall"]["video_paths"][0], step, mode="eval")
if cfg.env and is_eval_step:
if is_main_process:
step_id = get_step_identifier(step, cfg.steps)
logging.info(f"Eval policy at step {step}")
with torch.no_grad(), accelerator.autocast():
eval_info = eval_policy_all(
envs=eval_env, # dict[suite][task_id] -> vec_env
policy=accelerator.unwrap_model(policy),
preprocessor=preprocessor,
postprocessor=postprocessor,
n_episodes=cfg.eval.n_episodes,
videos_dir=cfg.output_dir / "eval" / f"videos_step_{step_id}",
max_episodes_rendered=4,
start_seed=cfg.seed,
max_parallel_tasks=cfg.env.max_parallel_tasks,
)
# overall metrics (suite-agnostic)
aggregated = eval_info["overall"]
# optional: per-suite logging
for suite, suite_info in eval_info.items():
logging.info("Suite %s aggregated: %s", suite, suite_info)
# meters/tracker
eval_metrics = {
"avg_sum_reward": AverageMeter("∑rwrd", ":.3f"),
"pc_success": AverageMeter("success", ":.1f"),
"eval_s": AverageMeter("eval_s", ":.3f"),
}
eval_tracker = MetricsTracker(
cfg.batch_size,
dataset.num_frames,
dataset.num_episodes,
eval_metrics,
initial_step=step,
accelerator=accelerator,
)
eval_tracker.eval_s = aggregated.pop("eval_s")
eval_tracker.avg_sum_reward = aggregated.pop("avg_sum_reward")
eval_tracker.pc_success = aggregated.pop("pc_success")
if wandb_logger:
wandb_log_dict = {**eval_tracker.to_dict(), **eval_info}
wandb_logger.log_dict(wandb_log_dict, step, mode="eval")
wandb_logger.log_video(eval_info["overall"]["video_paths"][0], step, mode="eval")
accelerator.wait_for_everyone()
if eval_env:
close_envs(eval_env)
logging.info("End of training")
if cfg.policy.push_to_hub:
policy.push_model_to_hub(cfg)
preprocessor.push_to_hub(cfg.policy.repo_id)
postprocessor.push_to_hub(cfg.policy.repo_id)
if is_main_process:
logging.info("End of training")
if cfg.policy.push_to_hub:
unwrapped_policy = accelerator.unwrap_model(policy)
unwrapped_policy.push_model_to_hub(cfg)
preprocessor.push_to_hub(cfg.policy.repo_id)
postprocessor.push_to_hub(cfg.policy.repo_id)
# Properly clean up the distributed process group
accelerator.wait_for_everyone()
accelerator.end_training()
def main():
init_logging()
train()

View File

@@ -13,6 +13,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Callable
from typing import Any
from lerobot.utils.utils import format_big_number
@@ -84,6 +85,7 @@ class MetricsTracker:
"samples",
"episodes",
"epochs",
"accelerator",
]
def __init__(
@@ -93,6 +95,7 @@ class MetricsTracker:
num_episodes: int,
metrics: dict[str, AverageMeter],
initial_step: int = 0,
accelerator: Callable | None = None,
):
self.__dict__.update(dict.fromkeys(self.__keys__))
self._batch_size = batch_size
@@ -106,6 +109,7 @@ class MetricsTracker:
self.samples = self.steps * self._batch_size
self.episodes = self.samples / self._avg_samples_per_ep
self.epochs = self.samples / self._num_frames
self.accelerator = accelerator
def __getattr__(self, name: str) -> int | dict[str, AverageMeter] | AverageMeter | Any:
if name in self.__dict__:
@@ -128,7 +132,7 @@ class MetricsTracker:
Updates metrics that depend on 'step' for one step.
"""
self.steps += 1
self.samples += self._batch_size
self.samples += self._batch_size * (self.accelerator.num_processes if self.accelerator else 1)
self.episodes = self.samples / self._avg_samples_per_ep
self.epochs = self.samples / self._num_frames

View File

@@ -14,7 +14,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from collections.abc import Generator
from collections.abc import Callable, Generator
from contextlib import contextmanager
from pathlib import Path
from typing import Any
@@ -164,14 +164,20 @@ def set_rng_state(random_state_dict: dict[str, Any]):
torch.cuda.random.set_rng_state(random_state_dict["torch_cuda_random_state"])
def set_seed(seed) -> None:
def set_seed(seed, accelerator: Callable | None = None) -> None:
"""Set seed for reproducibility."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
if accelerator:
from accelerate.utils import set_seed as _accelerate_set_seed
_accelerate_set_seed(seed)
@contextmanager
def seeded_context(seed: int) -> Generator[None, None, None]:

View File

@@ -27,6 +27,7 @@ from statistics import mean
import numpy as np
import torch
from accelerate import Accelerator
from datasets.utils.logging import disable_progress_bar, enable_progress_bar
@@ -110,36 +111,50 @@ def init_logging(
display_pid: bool = False,
console_level: str = "INFO",
file_level: str = "DEBUG",
accelerator: Accelerator | None = None,
):
"""Initialize logging configuration for LeRobot.
In multi-GPU training, only the main process logs to console to avoid duplicate output.
Non-main processes have console logging suppressed but can still log to file.
Args:
log_file: Optional file path to write logs to
display_pid: Include process ID in log messages (useful for debugging multi-process)
console_level: Logging level for console output
file_level: Logging level for file output
accelerator: Optional Accelerator instance (for multi-GPU detection)
"""
def custom_format(record: logging.LogRecord) -> str:
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
fnameline = f"{record.pathname}:{record.lineno}"
# NOTE: Display PID is useful for multi-process logging.
if display_pid:
pid_str = f"[PID: {os.getpid()}]"
message = f"{record.levelname} {pid_str} {dt} {fnameline[-15:]:>15} {record.getMessage()}"
else:
message = f"{record.levelname} {dt} {fnameline[-15:]:>15} {record.getMessage()}"
return message
pid_str = f"[PID: {os.getpid()}] " if display_pid else ""
return f"{record.levelname} {pid_str}{dt} {fnameline[-15:]:>15} {record.getMessage()}"
formatter = logging.Formatter()
formatter.format = custom_format
logger = logging.getLogger()
logger.setLevel(logging.NOTSET) # Set the logger to the lowest level to capture all messages
logger.setLevel(logging.NOTSET)
# Remove unused default handlers
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# Clear any existing handlers
logger.handlers.clear()
# Write logs to console
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
console_handler.setLevel(console_level.upper())
logger.addHandler(console_handler)
# Determine if this is a non-main process in distributed training
is_main_process = accelerator.is_main_process if accelerator is not None else True
# Console logging (main process only)
if is_main_process:
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
console_handler.setLevel(console_level.upper())
logger.addHandler(console_handler)
else:
# Suppress console output for non-main processes
logger.addHandler(logging.NullHandler())
logger.setLevel(logging.ERROR)
# Additionally write logs to file
if log_file is not None:
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(formatter)

View File

@@ -0,0 +1,211 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Multi-GPU Training Tests
This module tests multi-GPU training functionality with accelerate.
These tests are designed to run on machines with 2+ GPUs and are executed
in the nightly CI workflow.
The tests automatically generate accelerate configs and launch training
with subprocess to properly test the distributed training environment.
"""
import os
import subprocess
import tempfile
from pathlib import Path
import pytest
import torch
from lerobot.datasets.lerobot_dataset import LeRobotDataset
def get_num_available_gpus():
"""Returns the number of available GPUs."""
if not torch.cuda.is_available():
return 0
return torch.cuda.device_count()
def download_dataset(repo_id, episodes):
"""
Pre-download dataset to avoid race conditions in multi-GPU training.
Args:
repo_id: HuggingFace dataset repository ID
episodes: List of episode indices to download
"""
# Simply instantiating the dataset will download it
_ = LeRobotDataset(repo_id, episodes=episodes)
print(f"Dataset {repo_id} downloaded successfully")
def run_accelerate_training(config_args, num_processes=4, temp_dir=None):
"""
Helper function to run training with accelerate launch.
Args:
config_args: List of config arguments to pass to lerobot_train.py
num_processes: Number of processes (GPUs) to use
temp_dir: Temporary directory for outputs
Returns:
subprocess.CompletedProcess result
"""
config_path = Path(temp_dir) / "accelerate_config.yaml"
# Write YAML config
with open(config_path, "w") as f:
f.write("compute_environment: LOCAL_MACHINE\n")
f.write("distributed_type: MULTI_GPU\n")
f.write("mixed_precision: 'no'\n")
f.write(f"num_processes: {num_processes}\n")
f.write("use_cpu: false\n")
f.write("gpu_ids: all\n")
f.write("downcast_bf16: 'no'\n")
f.write("machine_rank: 0\n")
f.write("main_training_function: main\n")
f.write("num_machines: 1\n")
f.write("rdzv_backend: static\n")
f.write("same_network: true\n")
cmd = [
"accelerate",
"launch",
"--config_file",
str(config_path),
"-m",
"lerobot.scripts.lerobot_train",
] + config_args
result = subprocess.run(
cmd,
capture_output=True,
text=True,
env={**os.environ, "CUDA_VISIBLE_DEVICES": ",".join(map(str, range(num_processes)))},
)
return result
@pytest.mark.skipif(
get_num_available_gpus() < 2,
reason="Multi-GPU tests require at least 2 GPUs",
)
class TestMultiGPUTraining:
"""Test suite for multi-GPU training functionality."""
def test_basic_multi_gpu_training(self):
"""
Test that basic multi-GPU training runs successfully.
Verifies that the training completes without errors.
"""
# Pre-download dataset to avoid race conditions
download_dataset("lerobot/pusht", episodes=[0])
with tempfile.TemporaryDirectory() as temp_dir:
output_dir = Path(temp_dir) / "outputs"
config_args = [
"--dataset.repo_id=lerobot/pusht",
"--dataset.episodes=[0]",
"--policy.type=act",
"--policy.device=cuda",
"--policy.push_to_hub=false",
f"--output_dir={output_dir}",
"--batch_size=4",
"--steps=10",
"--eval_freq=-1",
"--log_freq=5",
"--save_freq=10",
"--seed=42",
"--num_workers=0",
]
result = run_accelerate_training(config_args, num_processes=4, temp_dir=temp_dir)
# Check that training completed successfully
assert result.returncode == 0, (
f"Multi-GPU training failed with return code {result.returncode}\n"
f"STDOUT:\n{result.stdout}\n"
f"STDERR:\n{result.stderr}"
)
# Verify checkpoint was saved
checkpoints_dir = output_dir / "checkpoints"
assert checkpoints_dir.exists(), "Checkpoints directory was not created"
# Verify that training completed
assert "End of training" in result.stdout or "End of training" in result.stderr
def test_checkpoint_saving_multi_gpu(self):
"""
Test that checkpoints are correctly saved during multi-GPU training.
Only the main process (rank 0) should save checkpoints.
"""
# Pre-download dataset to avoid race conditions
download_dataset("lerobot/pusht", episodes=[0])
with tempfile.TemporaryDirectory() as temp_dir:
output_dir = Path(temp_dir) / "outputs"
config_args = [
"--dataset.repo_id=lerobot/pusht",
"--dataset.episodes=[0]",
"--policy.type=act",
"--policy.device=cuda",
"--policy.push_to_hub=false",
f"--output_dir={output_dir}",
"--batch_size=4",
"--steps=20",
"--eval_freq=-1",
"--log_freq=5",
"--save_freq=10",
"--seed=42",
"--num_workers=0",
]
result = run_accelerate_training(config_args, num_processes=2, temp_dir=temp_dir)
assert result.returncode == 0, (
f"Training failed:\nSTDOUT:\n{result.stdout}\n\nSTDERR:\n{result.stderr}"
)
# Verify checkpoint directory exists
checkpoints_dir = output_dir / "checkpoints"
assert checkpoints_dir.exists(), "Checkpoints directory not created"
# Count checkpoint directories (should have checkpoint at step 10 and 20)
checkpoint_dirs = [d for d in checkpoints_dir.iterdir() if d.is_dir()]
assert len(checkpoint_dirs) >= 1, f"Expected at least 1 checkpoint, found {len(checkpoint_dirs)}"
# Verify checkpoint contents
for checkpoint_dir in checkpoint_dirs:
# Check for model files
model_files = list(checkpoint_dir.rglob("*.safetensors"))
assert len(model_files) > 0, f"No model files in checkpoint {checkpoint_dir}"
# Check for training state
training_state_dir = checkpoint_dir / "training_state"
assert training_state_dir.exists(), f"No training state in checkpoint {checkpoint_dir}"
# Verify optimizer state exists
optimizer_state = training_state_dir / "optimizer_state.safetensors"
assert optimizer_state.exists(), f"No optimizer state in checkpoint {checkpoint_dir}"